Lectin 2 liên kết tế bào hình gai (DCAL2) xác định một phân nhóm tế bào hình gai CD8α− riêng biệt

Journal of Leukocyte Biology - Tập 91 Số 3 - Trang 437-448 - 2011
Shinji Kasahara1, Edward A. Clark2
1Department of Immunology, University of Washington, 1959 N.E. Pacific St., Seattle, WA 98195, USA.
2Department of Immunology, University of Washington, Seattle, Washington, USA

Tóm tắt

TÓM TẮT

CLRs trên tế bào DC đóng vai trò quan trọng trong miễn dịch và được biểu hiện selektiv trên một số phân nhóm DC nhất định. DCAL2 (lectin C-type ức chế myeloid/Clec12a) ở chuột là một loại CLR kiểu II có ITIM. Sử dụng kháng thể đơn dòng đặc hiệu cho DCAL2 ở chuột, chúng tôi phát hiện rằng DCAL2 được biểu hiện với mức độ tương đối cao trên các APC và rằng biểu hiện DCAL2 có thể được sử dụng để chia CD8α– DCs thành các phân nhóm DCAL2+DCIR2– và DCAL2–DCIR2+. Các phân nhóm CD8α–DCAL2+ DC, CD8α–DCIR2+ DC và CD8α+DCAL2+ DC thể hiện các mức độ TLR khác nhau và phản ứng với các lớp TLR ligand độc đáo bằng cách sản xuất các bộ cytokine khác nhau. Trong khi CD8α–DCAL2+ DCs sản xuất mạnh mẽ cytokine, bao gồm IL-12, khi phản ứng với CpG, CD8α–DCIR2+ DCs chỉ sản xuất TNF-α và IL-10 với số lượng khiêm tốn khi được kích thích bằng zymosan. Tuy nhiên, CD8α–DCIR2+ DCs, không giống như các phân nhóm DC khác, tăng cường OX40L khi được kích thích bằng flagellin vi khuẩn. Theo như dự đoán từ biểu hiện cytokine của chúng, CD8α–DCAL2+ DCs một cách hiệu quả đã kích thích phản ứng Th1 trong sự hiện diện của CpG cả trong ống nghiệm và trong cơ thể sống, trong khi CD8α–DCIR2+ DCs kích thích tế bào Th2 trong đáp ứng với flagellin. Do đó, CD8α–DCAL2+ DCs bao gồm một phân nhóm CD8α– DC đặc biệt có khả năng hỗ trợ các phản ứng Th1. DCAL2 là một dấu hiệu hữu ích để xác định một quần thể tế bào hình gai CD8α– có vai trò kích thích Th1.

Từ khóa

#Dendritic Cell #DCAL2 #Th1 Response #CD8α− Dendritic Cells #Cytokines

Tài liệu tham khảo

Moser, 2003, Dendritic cells in immunity and tolerance-do they display opposite functions?, Immunity, 19, 5, 10.1016/S1074-7613(03)00182-1

Moser, 2000, Dendritic cell regulation of TH1-TH2 development, Nat. Immunol., 1, 199, 10.1038/79734

Shortman, 1997, Dendritic cell development: multiple pathways to nature's adjuvants, Stem Cells, 15, 409, 10.1002/stem.150409

Mosmann, 1989, TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties, Annu. Rev. Immunol., 7, 145, 10.1146/annurev.iy.07.040189.001045

Cohn, 2004, Asthma: mechanisms of disease persistence and progression, Annu. Rev. Immunol., 22, 789, 10.1146/annurev.immunol.22.012703.104716

Coquerelle, 2010, DC subsets in positive and negative regulation of immunity, Immunol. Rev., 234, 317, 10.1111/j.0105-2896.2009.00887.x

Vremec, 2000, CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen, J. Immunol., 164, 2978, 10.4049/jimmunol.164.6.2978

Henri, 2001, The dendritic cell populations of mouse lymph nodes, J. Immunol., 167, 741, 10.4049/jimmunol.167.2.741

Hochrein, 2001, Differential production of IL-12, IFN-α, and IFN-γ by mouse dendritic cell subsets, J. Immunol., 166, 5448, 10.4049/jimmunol.166.9.5448

Reis e Sousa, 1997, In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas, J. Exp. Med., 186, 1819, 10.1084/jem.186.11.1819

Edwards, 2002, Microbial recognition via Toll-like receptor-dependent and -independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering, J. Immunol., 169, 3652, 10.4049/jimmunol.169.7.3652

Yrlid, 2002, Antigen presentation capacity and cytokine production by murine splenic dendritic cell subsets upon Salmonella encounter, J. Immunol., 169, 108, 10.4049/jimmunol.169.1.108

Zhang, 2005, CD4-8- dendritic cells prime CD4+ T regulatory 1 cells to suppress antitumor immunity, J. Immunol., 175, 2931, 10.4049/jimmunol.175.5.2931

Maldonado-Lopez, 1999, CD8α+ and CD8α− subclasses of dendritic cells direct the development of distinct T helper cells in vivo, J. Exp. Med., 189, 587, 10.1084/jem.189.3.587

Pulendran, 1999, Distinct dendritic cell subsets differentially regulate the class of immune response in vivo, Proc. Natl. Acad. Sci. USA, 96, 1036, 10.1073/pnas.96.3.1036

Robinson, 2006, Myeloid C-type lectins in innate immunity, Nat. Immunol., 7, 1258, 10.1038/ni1417

Geijtenbeek, 2009, Signalling through C-type lectin receptors: shaping immune responses, Nat. Rev. Immunol., 9, 465, 10.1038/nri2569

Kawai, 2011, Toll-like receptors and their crosstalk with other innate receptors in infection and immunity, Immunity, 34, 637650, 10.1016/j.immuni.2011.05.006

Dzionek, 2001, BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon α/β induction, J. Exp. Med., 194, 1823, 10.1084/jem.194.12.1823

Valladeau, 2002, Identification of mouse Langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues, J. Immunol., 168, 782, 10.4049/jimmunol.168.2.782

Sancho, 2008, Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin, J. Clin. Invest., 118, 2098, 10.1172/JCI34584

Caminschi, 2008, The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement, Blood, 112, 3264, 10.1182/blood-2008-05-155176

Huysamen, 2008, CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes, J. Biol. Chem., 283, 16693, 10.1074/jbc.M709923200

Dudziak, 2007, Differential antigen processing by dendritic cell subsets in vivo, Science, 315, 107, 10.1126/science.1136080

Soares, 2007, A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12-independent but CD70-dependent mechanism in vivo, J. Exp. Med., 204, 1095, 10.1084/jem.20070176

Bakker, 2004, C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia, Cancer Res., 64, 8443, 10.1158/0008-5472.CAN-04-1659

Chen, 2006, Dendritic-cell-associated C-type lectin 2 (DCAL-2) alters dendritic-cell maturation and cytokine production, Blood, 107, 1459, 10.1182/blood-2005-08-3264

Han, 2004, KLRL1, a novel killer cell lectinlike receptor, inhibits natural killer cell cytotoxicity, Blood, 104, 2858, 10.1182/blood-2004-03-0878

Marshall, 2004, Identification and characterization of a novel human myeloid inhibitory C-type lectin-like receptor (MICL) that is predominantly expressed on granulocytes and monocytes, J. Biol. Chem., 279, 14792, 10.1074/jbc.M313127200

Pyz, 2008, Characterisation of murine MICL (CLEC12A) and evidence for an endogenous ligand, Eur. J. Immunol., 38, 1157, 10.1002/eji.200738057

Lahoud, 2009, The C-type lectin Clec12A present on mouse and human dendritic cells can serve as a target for antigen delivery and enhancement of antibody responses, J. Immunol., 182, 7587, 10.4049/jimmunol.0900464

Weis, 1998, The C-type lectin superfamily in the immune system, Immunol. Rev., 163, 19, 10.1111/j.1600-065X.1998.tb01185.x

Marshall, 2006, Human MICL (CLEC12A) is differentially glycosylated and is down-regulated following cellular activation, Eur. J. Immunol., 36, 2159, 10.1002/eji.200535628

Manickasingham, 2003, The ability of murine dendritic cell subsets to direct T helper cell differentiation is dependent on microbial signals, Eur. J. Immunol., 33, 101, 10.1002/immu.200390001

Mach, 2000, Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand, Cancer Res., 60, 3239

Ryan, 2002, Dendritic cell-associated lectin-1: a novel dendritic cell-associated, C-type lectin-like molecule enhances T cell secretion of IL-4, J. Immunol., 169, 5638, 10.4049/jimmunol.169.10.5638

Van Vliet, 2008, Dendritic cells and C-type lectin receptors: coupling innate to adaptive immune responses, Immunol. Cell Biol., 86, 580, 10.1038/icb.2008.55

Edwards, 2003, Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 α+ DC correlates with unresponsiveness to imidazoquinolines, Eur. J. Immunol., 33, 827, 10.1002/eji.200323797

Wilson, 2003, Murine dendritic cell development: difficulties associated with subset analysis, Immunol. Cell Biol., 81, 239, 10.1046/j.1440-1711.2003.t01-1-01165.x

McLellan, 2002, Anatomic location and T-cell stimulatory functions of mouse dendritic cell subsets defined by CD4 and CD8 expression, Blood, 99, 2084, 10.1182/blood.V99.6.2084

Zhang, 2010, Optimal TLR9 signal converts tolerogenic CD4–8– DCs into immunogenic ones capable of stimulating antitumor immunity via activating CD4+ Th1/Th17 and NK cell responses, J. Leukoc. Biol., 88, 393, 10.1189/jlb.0909633

Skokos, 2007, CD8– DCs induce IL-12-independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS, J. Exp. Med., 204, 1525, 10.1084/jem.20062305

Huysamen, 2009, The fungal pattern recognition receptor, Dectin-1, and the associated cluster of C-type lectin-like receptors, FEMS Microbiol. Lett., 290, 121, 10.1111/j.1574-6968.2008.01418.x

Koch, 1996, High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10, J. Exp. Med., 184, 741, 10.1084/jem.184.2.741

Jankovic, 2002, In the absence of IL-12, CD4(+) T cell responses to intracellular pathogens fail to default to a Th2 pattern and are host protective in an IL-10(-/-) setting, Immunity, 16, 429, 10.1016/S1074-7613(02)00278-9

Reis e Sousa, 1999, Paralysis of dendritic cell IL-12 production by microbial products prevents infection-induced immunopathology, Immunity, 11, 637, 10.1016/S1074-7613(00)80138-7

Jenkins, 2007, Dendritic cell expression of OX40 ligand acts as a costimulatory, not polarizing, signal for optimal Th2 priming and memory induction in vivo, J. Immunol., 179, 3515, 10.4049/jimmunol.179.6.3515

Didierlaurent, 2004, Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response, J. Immunol., 172, 6922, 10.4049/jimmunol.172.11.6922

Sokol, 2008, Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response, Nat. Immunol., 10, 713, 10.1038/ni.1738

Perrigoue, 2009, MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine- dependent immunity, Nat. Immunol., 10, 697, 10.1038/ni.1740

Phythian-Adams, 2010, CD11c depletion severely disrupts Th2 induction and development in vivo, J. Exp. Med., 207, 2089, 10.1084/jem.20100734