Delivery of miR-381-3p Mimic by Mesenchymal Stem Cell-Derived Exosomes Inhibits Triple Negative Breast Cancer Aggressiveness; an In Vitro Study
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, B. D., Kasinski, A. L., & Slack, F. J. (2014). Aberrant regulation and function of microRNAs in cancer. Current biology : CB, 24(16), R762–R776. https://doi.org/10.1016/j.cub.2014.06.043.
Peng, Y., & Croce, C. M. (2016). The role of MicroRNAs in human cancer. Signal Transduction and Targeted Therapy, 1(1), 15004. https://doi.org/10.1038/sigtrans.2015.4.
Marote, A., Teixeira, F. G., Mendes-Pinheiro, B., & Salgado, A. J. (2016). MSCs-derived Exosomes: Cell-secreted Nanovesicles with regenerative potential. Frontiers in Pharmacology, 7, 231. https://doi.org/10.3389/fphar.2016.00231.
Thery, C. (2011). Exosomes: Secreted vesicles and intercellular communications. F1000 biology reports, 3, 15. https://doi.org/10.3410/b3-15.
Batrakova, E. V., & Kim, M. S. (2015). Using exosomes, naturally-equipped nanocarriers, for drug delivery. Journal of controlled release : official journal of the Controlled Release Society, 219, 396–405. https://doi.org/10.1016/j.jconrel.2015.07.030.
Greco, S. J., & Rameshwar, P. (2012). Mesenchymal stem cells in drug/gene delivery: Implications for cell therapy. Therapeutic Delivery, 3(8), 997–1004.
Yeo, R. W., Lai, R. C., Zhang, B., Tan, S. S., Yin, Y., Teh, B. J., et al. (2013). Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Advanced Drug Delivery Reviews, 65(3), 336–341. https://doi.org/10.1016/j.addr.2012.07.001.
Melzer, C., Rehn, V., Yang, Y., Bahre, H., von der Ohe, J., & Hass, R. (2019). Taxol-loaded MSC-derived Exosomes provide a therapeutic vehicle to target metastatic breast Cancer and other carcinoma cells. Cancers, 11(6). https://doi.org/10.3390/cancers11060798.
Wu, S., Ju, G. Q., Du, T., Zhu, Y. J., & Liu, G. H. (2013). Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One, 8(4), e61366. https://doi.org/10.1371/journal.pone.0061366.
Bu, S., Wang, Q., Zhang, Q., Sun, J., He, B., Xiang, C., Liu, Z., & Lai, D. (2016). Human endometrial mesenchymal stem cells exhibit intrinsic anti-tumor properties on human epithelial ovarian cancer cells. Scientific Reports, 6, 37019. https://doi.org/10.1038/srep37019.
Reza, A., Choi, Y. J., Yasuda, H., & Kim, J. H. (2016). Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Scientific Reports, 6, 38498. https://doi.org/10.1038/srep38498.
Liang, Y., Zhao, Q., Fan, L., Zhang, Z., Tan, B., Liu, Y., et al. (2015). Down-regulation of MicroRNA-381 promotes cell proliferation and invasion in colon cancer through up-regulation of LRH-1. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 75, 137–141. https://doi.org/10.1016/j.biopha.2015.07.020.
Cao, Q., Liu, F., Ji, K., Liu, N., He, Y., Zhang, W., & Wang, L. (2017). MicroRNA-381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. Journal of experimental & clinical cancer research : CR, 36(1), 29. https://doi.org/10.1186/s13046-017-0499-z.
Xue, Y., Xu, W., Zhao, W., Wang, W., Zhang, D., & Wu, P. (2017). miR-381 inhibited breast cancer cells proliferation, epithelial-to-mesenchymal transition and metastasis by targeting CXCR4. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 86, 426–433. https://doi.org/10.1016/j.biopha.2016.12.051.
Rui, X., Gu, T. T., Pan, H. F., Shao, S. L., & Shao, H. X. (2019). MicroRNA-381 suppresses proliferation and invasion of prostate cancer cells through downregulation of the androgen receptor. Oncology Letters, 18(2), 2066–2072. https://doi.org/10.3892/ol.2019.10471.
Mohammadi-Yeganeh, S., Hosseini, V., & Paryan, M. (2019). Wnt pathway targeting reduces triple-negative breast cancer aggressiveness through miRNA regulation in vitro and in vivo. Journal of Cellular Physiology, 234(10), 18317–18328. https://doi.org/10.1002/jcp.28465.
Mi, H., Wang, X., Wang, F., Li, L., Zhu, M., Wang, N., Xiong, Y., & Gu, Y. (2018). miR-381 induces sensitivity of breast cancer cells to doxorubicin by inactivation of MAPK signaling via FYN. European Journal of Pharmacology, 839, 66–75. https://doi.org/10.1016/j.ejphar.2018.09.024.
Yi, D., Xu, L., Wang, R., Lu, X., & Sang, J. (2019). miR-381 overcomes cisplatin resistance in breast cancer by targeting MDR1. Cell Biology International, 43(1), 12–21. https://doi.org/10.1002/cbin.11071.
Schlimgen, R., Howard, J., Wooley, D., Thompson, M., Baden, L. R., Yang, O. O., Christiani, D. C., Mostoslavsky, G., Diamond, D. V., Duane, E. G., Byers, K., Winters, T., Gelfand, J. A., Fujimoto, G., Hudson, T. W., & Vyas, J. M. (2016). Risks associated with Lentiviral vector exposures and prevention strategies. Journal of Occupational and Environmental Medicine, 58(12), 1159–1166. https://doi.org/10.1097/jom.0000000000000879.
Kia, V., Paryan, M., Mortazavi, Y., Biglari, A., & Mohammadi-Yeganeh, S. (2019). Evaluation of exosomal miR-9 and miR-155 targeting PTEN and DUSP14 in highly metastatic breast cancer and their effect on low metastatic cells. Journal of Cellular Biochemistry, 120(4), 5666–5676. https://doi.org/10.1002/jcb.27850.
Kong, W., Yang, L., Li, P. P., Kong, Q. Q., Wang, H. Y., Han, G. X., et al. (2018). MiR-381-3p inhibits proliferation, migration and invasion by targeting LRP6 in papillary thyroid carcinoma. European review for medical and pharmacological sciences, 22(12), 3804–3811. https://doi.org/10.26355/eurrev_201806_15264.
Hu, W. W., Chen, P. C., Chen, J. M., Wu, Y. M., Liu, P. Y., Lu, C. H., et al. (2017). Periostin promotes epithelial-mesenchymal transition via the MAPK/miR-381 axis in lung cancer. Oncotarget, 8(37), 62248–62260. https://doi.org/10.18632/oncotarget.19273.
Bader, A. G., Brown, D., & Winkler, M. (2010). The promise of microRNA replacement therapy. Cancer Research, 70(18), 7027–7030. https://doi.org/10.1158/0008-5472.can-10-2010.
Zhang, D., Lee, H., Zhu, Z., Minhas, J. K., & Jin, Y. (2017). Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. American journal of physiology Lung cellular and molecular physiology, 312(1), L110–Ll21. https://doi.org/10.1152/ajplung.00423.2016.
Shang, S., Wang, J., Chen, S., Tian, R., Zeng, H., Wang, L., Xia, M., Zhu, H., & Zuo, C. (2019). Exosomal miRNA-1231 derived from bone marrow mesenchymal stem cells inhibits the activity of pancreatic cancer. Cancer medicine., 8, 7728–7740. https://doi.org/10.1002/cam4.2633.
Che, Y., Shi, X., Shi, Y., Jiang, X., Ai, Q., Shi, Y., Gong, F., & Jiang, W. (2019). Exosomes derived from miR-143-overexpressing MSCs inhibit cell migration and invasion in human prostate Cancer by Downregulating TFF3. Molecular therapy Nucleic acids, 18, 232–244. https://doi.org/10.1016/j.omtn.2019.08.010.
Xie, C., Du, L. Y., Guo, F., Li, X., & Cheng, B. (2019). Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration. Molecular and Cellular Biochemistry, 458(1–2), 11–26. https://doi.org/10.1007/s11010-019-03526-7.
Sharif, S., Ghahremani, M. H., & Soleimani, M. (2018). Delivery of exogenous miR-124 to Glioblastoma multiform cells by Wharton's jelly Mesenchymal stem cells decreases cell proliferation and migration, and confers Chemosensitivity. Stem Cell Reviews and Reports, 14(2), 236–246. https://doi.org/10.1007/s12015-017-9788-3.
Naseri, Z., Oskuee, R. K., Jaafari, M. R., & Forouzandeh, M. M. (2018). Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. International Journal of Nanomedicine, 13, 7727–7747. https://doi.org/10.2147/ijn.s182384.
Naseri, Z., Oskuee, R. K., Forouzandeh-Moghadam, M., & Jaafari, M. R. (2020). Delivery of LNA-antimiR-142-3p by Mesenchymal stem cells-derived Exosomes to breast Cancer stem cells reduces Tumorigenicity. Stem cell reviews and reports., 16, 541–556. https://doi.org/10.1007/s12015-019-09944-w.
Lou, G., Song, X., Yang, F., Wu, S., Wang, J., Chen, Z., & Liu, Y. (2015). Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. Journal of Hematology & Oncology, 8, 122. https://doi.org/10.1186/s13045-015-0220-7.
Lou, G., Chen, L., Xia, C., Wang, W., Qi, J., Li, A., Zhao, L., Chen, Z., Zheng, M., & Liu, Y. (2020). MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. Journal of experimental & clinical cancer research : CR, 39(1), 4. https://doi.org/10.1186/s13046-019-1512-5.
Strioga, M., Viswanathan, S., Darinskas, A., Slaby, O., & Michalek, J. (2012). Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells and Development, 21(14), 2724–2752. https://doi.org/10.1089/scd.2011.0722.
Lotvall, J., Hill, A. F., Hochberg, F., Buzas, E. I., Di Vizio, D., Gardiner, C., et al. (2014). Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. Journal of extracellular vesicles, 3, 26913. https://doi.org/10.3402/jev.v3.26913.
Yuana, Y., Böing, A. N., Grootemaat, A. E., van der Pol, E., Hau, C. M., Cizmar, P., Buhr, E., Sturk, A., & Nieuwland, R. (2015). Handling and storage of human body fluids for analysis of extracellular vesicles. Journal of extracellular vesicles, 4, 29260. https://doi.org/10.3402/jev.v4.29260.
Asadirad, A., Hashemi, S. M., Baghaei, K., Ghanbarian, H., Mortaz, E., Zali, M. R., & Amani, D. (2019). Phenotypical and functional evaluation of dendritic cells after exosomal delivery of miRNA-155. Life Sciences, 219, 152–162. https://doi.org/10.1016/j.lfs.2019.01.005.
Dey, N., Barwick, B. G., Moreno, C. S., Ordanic-Kodani, M., Chen, Z., Oprea-Ilies, G., Tang, W., Catzavelos, C., Kerstann, K. F., Sledge Jr., G. W., Abramovitz, M., Bouzyk, M., de, P., & Leyland-Jones, B. R. (2013). Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer, 13, 537. https://doi.org/10.1186/1471-2407-13-537.
Xu, J., Prosperi, J. R., Choudhury, N., Olopade, O. I., & Goss, K. H. (2015). Beta-catenin is required for the tumorigenic behavior of triple-negative breast cancer cells. PloS one, 10(2), e0117097. https://doi.org/10.1371/journal.pone.0117097.
Zhan, T., Rindtorff, N., & Boutros, M. (2017). Wnt signaling in cancer. Oncogene, 36(11), 1461–1473. https://doi.org/10.1038/onc.2016.304.
Ma, J., Lu, W., Chen, D., Xu, B., & Li, Y. (2017). Role of Wnt co-receptor LRP6 in triple negative breast Cancer cell migration and invasion. Journal of Cellular Biochemistry, 118(9), 2968–2976. https://doi.org/10.1002/jcb.25956.
He, X., Wei, Y., Wang, Y., Liu, L., Wang, W., & Li, N. (2016). MiR-381 functions as a tumor suppressor in colorectal cancer by targeting Twist1. Oncotargets and Therapy, 9, 1231–1239. https://doi.org/10.2147/ott.s99228.
Kashiwagi, S., Yashiro, M., Takashima, T., Nomura, S., Noda, S., Kawajiri, H., Ishikawa, T., Wakasa, K., & Hirakawa, K. (2010). Significance of E-cadherin expression in triple-negative breast cancer. British Journal of Cancer, 103(2), 249–255. https://doi.org/10.1038/sj.bjc.6605735.
Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology, 15(3), 178–196. https://doi.org/10.1038/nrm3758.
Wang, Y., Liu, J., Ying, X., Lin, P. C., & Zhou, B. P. (2016). Twist-mediated epithelial-mesenchymal transition promotes breast tumor cell invasion via inhibition of hippo pathway. Scientific Reports, 6, 24606. https://doi.org/10.1038/srep24606.
Zhang, Y. Q., Wei, X. L., Liang, Y. K., Chen, W. L., Zhang, F., Bai, J. W., Qiu, S. Q., du, C. W., Huang, W. H., & Zhang, G. J. (2015). Over-expressed twist associates with markers of epithelial Mesenchymal transition and predicts poor prognosis in breast cancers via ERK and Akt activation. PLoS One, 10(8), e0135851. https://doi.org/10.1371/journal.pone.0135851.
Xiao, B., Shi, X., & Bai, J. (2019). miR-30a regulates the proliferation and invasion of breast cancer cells by targeting snail. Oncology Letters, 17(1), 406–413. https://doi.org/10.3892/ol.2018.9552.
Lin, R., Wang, S., & Zhao, R. C. (2013). Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Molecular and Cellular Biochemistry, 383(1–2), 13–20. https://doi.org/10.1007/s11010-013-1746-z.