Những tổn thất tại các ranh giới điều chỉnh nhiễm sắc thể liên quan đến bệnh bẩm sinh

Genome Biology - Tập 15 - Trang 1-16 - 2014
Jonas Ibn-Salem1,2,3, Sebastian Köhler4, Michael I Love2,3, Ho-Ryun Chung2, Ni Huang5, Matthew E Hurles5, Melissa Haendel6, Nicole L Washington7, Damian Smedley5, Christopher J Mungall7, Suzanna E Lewis7, Claus-Eric Ott2, Sebastian Bauer4, Paul N Schofield8,9, Stefan Mundlos2,4,10, Malte Spielmann11,4, Peter N Robinson1,2,4,3,10
1Department of Mathematics and Computer Science, Free University Berlin, Berlin, Germany
2Max Planck Institute for Molecular Genetics, Berlin, Germany
3International Max Planck Research School for Computational Biology and Scientific Computing, Berlin, Germany
4Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
5Wellcome Trust Sanger Institute, Hinxton, UK
6Oregon Health & Science University, Department of Medical Informatics & Clinical Epidemiology, Portland, USA
7Genomics Division, Lawrence Berkeley National Lab, Berkeley, USA
8The Jackson Laboratory, Bar Harbor, USA
9University at Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, UK
10Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
11Max-Planck Institute for Molecular Genetics, Berlin, Germany

Tóm tắt

Dữ liệu gần đây từ phân tích bắt cặp cấu trúc nhiễm sắc thể toàn bộGenome cho thấy rằng bộ gen của con người được chia thành các vùng tương tác tự thân có kích thước megabase được bảo tồn, gọi là miền hình học. Các miền hình học này tạo thành xương sống điều hòa của bộ gen và được ngăn cách bởi các yếu tố ranh giới điều hòa hoặc rào cản. Các biến thể về số lượng bản sao có thể thay đổi kiến trúc miền hình học bằng cách xóa hoặc sao chép các rào cản, từ đó cho phép các vùng tăng cường từ các miền lân cận kích hoạt không đúng cách các gen gây ra sự biểu hiện sai lệch và bệnh tật, một cơ chế đột biến gần đây được gọi là việc nhận nuôi các yếu tố tăng cường. Chúng tôi sử dụng cơ sở dữ liệu Ontology về Phân loại hình thái con người để liên hệ các hình thái của 922 trường hợp xóa đã được ghi lại trong cơ sở dữ liệu DECIPHER với các bệnh đơn gen liên quan đến các gen trong hoặc kề cận với những khu vực bị xóa. Chúng tôi xác định các tổ hợp của các yếu tố tăng cường chuyên biệt cho mô và các gen kề cận với khu vực bị xóa và liên quan đến các hình thái trong mô tương ứng, trong đó các hình thái phù hợp với những gì được quan sát trong tổn thất. Chúng tôi so sánh điều này một cách tính toán với một cơ chế bệnh lý dựa trên số lượng gen, cố gắng giải thích hình thái do xóa bằng cách thiếu hụt haplo của các gen nằm trong các khu vực bị xóa. Tối đa 11.8% các trường hợp xóa có thể được giải thích tốt nhất bằng cách nhận nuôi các yếu tố tăng cường hoặc một sự kết hợp giữa việc nhận nuôi các yếu tố tăng cường và các hiệu ứng độ dossage gen. Kết quả của chúng tôi gợi ý rằng việc nhận nuôi các yếu tố tăng cường do các tổn thất ở các ranh giới điều chỉnh có thể góp phần tạo ra một thiểu số đáng kể của các hình thái biến thể về số lượng bản sao và do đó nên được xem xét trong việc giải thích y tế của chúng.

Từ khóa

#bệnh bẩm sinh #tổn thất gen #miền hình học #yếu tố tăng cường #ranh giới điều chỉnh

Tài liệu tham khảo

Vulto-van Silfhout AT, Hehir-Kwa JY, van Bon BWM, Schuurs-Hoeijmakers JHM, Meader S, Hellebrekers CJM, Thoonen IJM, de Brouwer APM, Brunner HG, Webber C, Pfundt R, de Leeuw N, de Vries BBA: Clinical significance of de novo and inherited copy number variation. Hum Mutat. 2013, 34: 1679-1687. 10.1002/humu.22442. Pober BR: Williams-Beuren syndrome. N Engl J Med. 2010, 362: 239-252. 10.1056/NEJMra0903074. Curran ME, Atkinson DL, Ewart AK, Morris CA, Leppert MF, Keating MT: The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell. 1993, 73: 159-168. 10.1016/0092-8674(93)90168-P. Frangiskakis JM, Ewart AK, Morris CA, Mervis CB, Bertrand J, Robinson BF, Klein BP, Ensing GJ, Everett LA, Green ED, Pröschel C, Gutowski NJ, Noble M, Atkinson DL, Odelberg SJ, Keating MT: LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell. 1996, 86: 59-69. 10.1016/S0092-8674(00)80077-X. Morris CA, Mervis CB, Hobart HH, Gregg RG, Bertrand J, Ensing GJ, Sommer A, Moore CA, Hopkin RJ, Spallone PA, Keating MT, Osborne L, Kimberley KW, Stock AD: GTF2I hemizygosity implicated in mental retardation in Williams syndrome: genotype-phenotype analysis of five families with deletions in the Williams syndrome region. Am J Med Genet A. 2003, 123A: 45-59. 10.1002/ajmg.a.20496. Klopocki E, Ott CE, Benatar N, Ullmann R, Mundlos S, Lehmann K: A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. J Med Genet. 2008, 45: 370-375. 10.1136/jmg.2007.055699. Ott CE, Hein H, Lohan S, Hoogeboom J, Foulds N, Grünhagen J, Stricker S, Villavicencio-Lorini P, Klopocki E, Mundlos S: Microduplications upstream of MSX2 are associated with a phenocopy of cleidocranial dysplasia. J Med Genet. 2012, 49: 437-441. 10.1136/jmedgenet-2012-100825. Verdin H, D’haene B, Beysen D, Novikova Y, Menten B, Sante T, Lapunzina P, Nevado J, Carvalho CMB, Lupski JR, De Baere E: Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet. 2013, 9: e1003358-10.1371/journal.pgen.1003358. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W: Looping and interaction between hypersensitive sites in the activeβ-globin locus. Mol Cell. 2002, 10: 1453-1465. 10.1016/S1097-2765(02)00781-5. Branco MR, Pombo A: Chromosome organization: new facts, new models. Trends Cell Biol. 2007, 17: 127-134. 10.1016/j.tcb.2006.12.006. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009, 326: 289-293. 10.1126/science.1181369. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012, 485: 376-380. 10.1038/nature11082. Krijger PHL, de Laat W: Identical cells with different 3D genomes; cause and consequences?. Curr Opin Genet Dev. 2013, 23: 191-196. 10.1016/j.gde.2012.12.010. Zuin J, Dixon JR, van der Reijden MIJA, Ye Z, Kolovos P, Brouwer RWW, van de Corput MPC, van de Werken HJG, Knoch TA, van IJcken WFJ, Grosveld FG, Ren B, Wendt KS: Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci USA. 2014, 111: 996-1001. 10.1073/pnas.1317788111. de Laat W, Duboule D: Topology of mammalian developmental enhancers and their regulatory landscapes. Nature. 2013, 502: 499-506. 10.1038/nature12753. Dekker J, Marti-Renom Ma, Mirny La: Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nature Reviews Genetics. 2013, 14: 390-403. 10.1038/nrg3454. Kyrchanova O, Georgiev P: Chromatin insulators and long-distance interactions in Drosophila. FEBS Lett. 2014, 588: 8-14. 10.1016/j.febslet.2013.10.039. Li HB, Müller M, Bahechar IA, Kyrchanova O, Ohno K, Georgiev P, Pirrotta V: Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in Drosophila melanogaster. Mol Cell Biol. 2011, 31: 616-625. 10.1128/MCB.00849-10. Kravchenko E, Savitskaya E, Kravchuk O, Parshikov A, Georgiev P, Savitsky M: Pairing between gypsy insulators facilitates the enhancer action in trans throughout the Drosophila genome. Mol Cell Biol. 2005, 25: 9283-9291. 10.1128/MCB.25.21.9283-9291.2005. Spielmann M, Brancati F, Krawitz PM, Robinson PN, Ibrahim DM, Franke M, Hecht J, Lohan S, Dathe K, Nardone AM, Ferrari P, Landi A, Wittler L, Timmermann B, Chan D, Mennen U, Klopocki E, Mundlos S: Homeotic arm-to-leg transformation associated with genomic rearrangements at the PITX1 locus. Am J Hum Genet. 2012, 91: 629-635. 10.1016/j.ajhg.2012.08.014. Spielmann M, Mundlos S: Structural variations, the regulatory landscape of the genome and their alteration in human disease. Bioessays. 2013, 35: 533-543. 10.1002/bies.201200178. Swaminathan GJ, Bragin E, Chatzimichali EA, Corpas M, Bevan AP, Wright CF, Carter NP, Hurles ME, Firth HV: DECIPHER: web-based, community resource for clinical interpretation of rare variants in developmental disorders. Hum Mol Genet. 2012, 21: R37-R44. 10.1093/hmg/dds362. Xi H, Shulha HP, Lin JM, Vales TR, Fu Y, Bodine DM, McKay RDG, Chenoweth JG, Tesar PJ, Furey TS, Ren B, Weng Z, Crawford GE: Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet. 2007, 3: e136-10.1371/journal.pgen.0030136. Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, Lee BK, Sheffield NC, Gräf S, Huss M, Keefe D, Liu Z, London D, McDaniell RM, Shibata Y, Showers KA, Simon JM, Vales T, Wang T, Winter D, Zhang Z, Clarke ND, Birney E, Iyer VR, Crawford GE, Lieb JD, Furey TS: Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 2011, 21: 1757-1767. 10.1101/gr.121541.111. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE: Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011, 473: 43-49. 10.1038/nature09906. Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M: An integrated encyclopedia of DNA elements in the human genome. Nature. 2012, 489: 57-74. 10.1038/nature11247. Visel A, Blow MJ, Li Z, Zhang T, Akiyama Ja, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio La: ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature. 2009, 457: 854-858. 10.1038/nature07730. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, et al: Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012, 337: 1190-1195. 10.1126/science.1222794. Doelken SC, Köhler S, Mungall CJ, Gkoutos GV, Ruef BJ, Smith C, Smedley D, Bauer S, Klopocki E, Schofield PN, Westerfield M, Robinson PN, Lewis SE: Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish. Disease Models Mech. 2013, 372: 358-372. 10.1242/dmm.010322. Robinson PN, Webber C: Phenotype ontologies and cross-species analysis for translational research. PLoS Genet. 2014, 10: e1004268-10.1371/journal.pgen.1004268. Köhler S, Doelken SC, Ruef BJ, Bauer S, Washington N, Westerfield M, Gkoutos G, Schofield P, Smedley D, Lewis SE, Robinson PN, Mungall CJ: Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research. F1000Res. 2013, 2: 30- Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, Pollazzon M, Buoni S, Spiga O, Ricciardi S, Meloni I, Longo I, Mari F, Broccoli V, Zappella M, Renieri A: FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet. 2008, 83: 89-93. 10.1016/j.ajhg.2008.05.015. Kortüm F, Das S, Flindt M, Morris-Rosendahl DJ, Stefanova I, Goldstein A, Horn D, Klopocki E, Kluger G, Martin P, Rauch A, Roumer A, Saitta S, Walsh LE, Wieczorek D, Uyanik G, Kutsche K, Dobyns WB: The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet. 2011, 48: 396-406. 10.1136/jmg.2010.087528. Ellaway CJ, Ho G, Bettella E, Knapman A, Collins F, Hackett A, McKenzie F, Darmanian A, Peters GB, Fagan K, Christodoulou J: 14q12 microdeletions excluding FOXG1 give rise to a congenital variant Rett syndrome-like phenotype. Eur J Hum Genet EJHG. 2013, 21: 522-527. 10.1038/ejhg.2012.208. Allou L, Lambert L, Amsallem D, Bieth E, Edery P, Destrée A, Rivier F, Amor D, Thompson E, Nicholl J, Harbord M, Nemos C, Saunier A, Moustaïne A, Vigouroux A, Jonveaux P, Philippe C: 14q12 and severe Rett-like phenotypes: new clinical insights and physical mapping of FOXG1-regulatory elements. Eur J Hum Genet EJHG. 2012, 20: 1216-1223. 10.1038/ejhg.2012.127. Lettice LA, Daniels S, Sweeney E, Venkataraman S, Devenney PS, Gautier P, Morrison H, Fantes J, Hill RE, FitzPatrick DR: Enhancer-adoption as a mechanism of human developmental disease. Hum Mutat. 2011, 32: 1492-1499. 10.1002/humu.21615. Visel A, Minovitsky S, Dubchak I, Pennacchio La: VISTA Enhancer Browser - a database of tissue-specific human enhancers. Nucleic Acids Res. 2007, 35: D88-D92. 10.1093/nar/gkl822. Li Z, Jerebtsova M, Liu XH, Tang P, Ray PE: Novel cystogenic role of basic fibroblast growth factor in developing rodent kidneys. Am J Physiol Renal Physiol. 2006, 291: F289-F296. 10.1152/ajprenal.00382.2005. Bates CM: Role of fibroblast growth factor receptor signaling in kidney development. Pediat Nephrol (Berlin, Germany). 2011, 26: 1373-1379. 10.1007/s00467-010-1747-z. Roodhooft AM, Brussaard CC, Elst E, van Acker KJ: Lacrimo-auriculo-dento-digital (LADD) syndrome with renal and foot anomalies. Clin Genet. 1990, 38: 228-232. 10.1111/j.1399-0004.1990.tb03574.x. LeHeup BP, Masutti JP, Droullé P, Tisserand J: The Antley-Bixler syndrome: report of two familial cases with severe renal and anal anomalies. Eur J Pediatr. 1995, 154: 130-133. 10.1007/BF01991916. Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D: A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell. 2012, 149: 819-831. 10.1016/j.cell.2012.03.035. Snider L, Geng LN, Lemmers RJLF, Kyba M, Ware CB, Nelson AM, Tawil R, Filippova GN, van der Maarel SM, Tapscott SJ, Miller DG: Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet. 2010, 6: e1001181-10.1371/journal.pgen.1001181. Block GJ, Narayanan D, Amell AM, Petek LM, Davidson KC, Bird TD, Tawil R, Moon RT, Miller DG: Wnt/β-catenin signaling suppresses DUX4 expression and prevents apoptosis of FSHD muscle cells. Hum Mol Genet. 2013, 22: 4661-4672. 10.1093/hmg/ddt314. Huang N, Lee I, Marcotte EM, Hurles ME: Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 2010, 6: e1001154-10.1371/journal.pgen.1001154. Hehir-Kwa JY, Wieskamp N, Webber C, Pfundt R, Brunner HG, Gilissen C, de Vries BBA, Ponting CP, Veltman JA: Accurate distinction of pathogenic from benign CNVs in mental retardation. PLoS Comput Biol. 2010, 6: e1000752-10.1371/journal.pcbi.1000752. Shaikh TH, Haldeman-Englert C, Geiger EA, Ponting CP, Webber C: Genes and biological processes commonly disrupted in rare and heterogeneous developmental delay syndromes. Hum Mol Genet. 2011, 20: 880-893. 10.1093/hmg/ddq527. Boulding H, Webber C: Large-scale objective association of mouse phenotypes with human symptoms through structural variation identified in patients with developmental disorders. Hum Mutat. 2012, 33: 874-883. 10.1002/humu.22069. Corpas M, Bragin E, Clayton S, Bevan P, Firth HV: Interpretation of genomic copy number variants using DECIPHER. Curr Protoc Hum Genet. 2012, 8: 14- Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, Diekhans M, Furey TS, Harte RA, Hsu F, Hillman-Jackson J, Kuhn RM, Pedersen JS, Pohl A, Raney BJ, Rosenbloom KR, Siepel A, Smith KE, Sugnet CW, Sultan-Qurraie A, Thomas DJ, Trumbower H, Weber RJ, Weirauch M, Zweig AS, Haussler D, Kent WJ: The UCSC genome browser database: update 2006. Nucleic Acids Res. 2006, 34: D590-D598. 10.1093/nar/gkj144. Song L, Crawford GE: DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc. 2010, 2010: pdb.prot5384-10.1101/pdb.prot5384. He HH, Meyer CA, Chen MW, Jordan VC, Brown M, Liu XS: Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res. 2012, 22: 1015-1025. 10.1101/gr.133280.111. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE: High-resolution mapping and characterization of open chromatin across the genome. Cell. 2008, 132: 311-322. 10.1016/j.cell.2007.12.014. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis M, Marra MA, Beaudet AL, Ecker JR, Farnham PJ, Hirst M, Lander ES, Mikkelsen TS, Thomson JA: The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 2010, 28: 1045-1048. 10.1038/nbt1010-1045. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010, 26: 841-842. 10.1093/bioinformatics/btq033. Tibshirani R, Hastie T, Narasimhan B, Chu G: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA. 2002, 99: 6567-6572. 10.1073/pnas.082099299. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, Gabrielson E, Garcia JGN, Geoghegan J, Germino G, Griffin C, Hilmer SC, Hoffman E, Jedlicka AE, Kawasaki E, Martínez-Murillo F, Morsberger L, Lee H, Petersen D, Quackenbush J, Scott A, Wilson M, Yang Y, Ye SQ, Yu W: Multiple-laboratory comparison of microarray platforms. Nat Methods. 2005, 2: 345-350. 10.1038/nmeth756. Li Q, Brown JB, Huang H, Bickel PJ: Measuring reproducibility of high-throughput experiments. Ann Appl Stat. 2011, 5: 1752-1779. 10.1214/11-AOAS466. San Diego Supercomputer Center. [], [http://chromosome.sdsc.edu/mouse/hi-c/download.html] Resnik P: Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res. 1999, 11: 95-130. Robinson PN, Bauer S: Introduction to Bio-Ontologies, Boca Raton: CRC Press; 2011. Lanctôt C, Lamolet B, Drouin J: The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development. 1997, 124: 2807-2817. Gurnett CA, Alaee F, Kruse LM, Desruisseau DM, Hecht JT, Wise CA, Bowcock AM, Dobbs MB: Asymmetric lower-limb malformations in individuals with homeobox PITX1 gene mutation. Am J Hum Genet. 2008, 83: 616-622. 10.1016/j.ajhg.2008.10.004. Alvarado DM, McCall K, Aferol H, Silva MJ, Garbow JR, Spees WM, Patel T, Siegel M, Dobbs MB, Gurnett CA: Pitx1 haploinsufficiency causes clubfoot in humans and a clubfoot-like phenotype in mice. Hum Mol Genet. 2011, 20: 3943-3952. 10.1093/hmg/ddr313. Köhler S, Doelken SC, Mungall CJ, Bauer S, Firth HV, Bailleul-Forestier I, Black GCM, Brown DL, Brudno M, Campbell J, Fitzpatrick DR, Eppig JT, Jackson AP, Freson K, Girdea M, Helbig I, Hurst JA, Jähn J, Jackson LG, Kelly AM, Ledbetter DH, Mansour S, Martin CL, Moss C, Mumford A, Ouwehand WH, Park SM, Riggs ER, Scott RH, Sisodiya S, et al: The human phenotype ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 2014, 42: D966-D974. 10.1093/nar/gkt1026. topdombar: Source code repository for analysis of phenotypes, microdeletions, and topological chromosome domain boundaries. [], [https://github.com/charite/topodombar] SparseData. [], [https://github.com/mikelove/SparseData] DECIPHER (DatabasE of genomic variants and phenotype in humans using ensembl resources). [], [http://decipher.sanger.ac.uk/] Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, Harte RA, Heitner S, Hinrichs AS, Learned K, Lee BT, Li CH, Raney BJ, Rhead B, Rosenbloom KR, Sloan CA, Speir ML, Zweig AS, Haussler D, Kuhn RM, Kent WJ: The UCSC Genome Browser database: 2014 update. Nucleic Acids Res. 2014, 42: D764-D770. 10.1093/nar/gkt1168. Human Phenotype Ontology Downloads. [], [http://human-phenotype-ontology.org/contao/index.php/downloads.html]