Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels

Nature Communications - Tập 4 Số 1
Juliette Albuisson1, Swetha E. Murthy2, Michael Bandell3, Bertrand Coste2, Hélène Louis-Dit-Picard4, Jayanti Mathur3, Madeleine Fénéant‐Thibault5, G Tertian6, Jean-Pierre de Jaureguiberry7, Pierre-Yves Syfuss8, Stuart M. Cahalan2, Loïc Garçon9, Fabienne Toutain10, Pierre Bordigoni11, J. Delaunay12, Véronique Picard6, Xavier Jeunemaı̂tre13, Ardem Patapoutian3
1INSERM, UMRS-970, PARCC, Paris, 75015, France
2Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, 92037, USA
3Genomics Institute of the Novartis Research Foundation, San Diego, 92121, California, USA
4Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, 75015, France
5AP-HP, Service de Biochimie, Hôpital Bicêtre, Le Kremlin Bicêtre 94275, France,
6Univ Paris-Sud, EA 4531, Chatenay Malabry and Le Kremlin Bicêtre 92296, France,
7Service de médecine interne, HIA Sainte-Anne, boulevard Sainte-Anne, Toulon Naval, 83800, France
8Service de Médecine Interne, Centre Hospitalier, Troyes, 10000, France
9AP-HP, Service d'Hématologie et Immunologie biologiques, Hôpital Saint Antoine, Paris, 75012, France
10Service d'Hématologie Oncologie Pédiatrique, Université de Rennes-I, CHU de Rennes, Rennes 35033, France,
11Service d'Hématologie-Oncologie Pédiatrique, CHU, Hôpital Jean Minjoz, Besançon, 25030, France
12AP-HP, Service d'Hématologie et Immunologie, Hôpital Bicêtre, Le Kremlin Bicêtre 94275, France,
13Département de Génétique, AP-HP, Hôpital Européen Georges Pompidou, Paris, 75015, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Delaunay, J. The hereditary stomatocytoses: genetic disorders of the red cell membrane permeability to monovalent cations. Semin. Hematol. 41, 165–172 (2004).

Grootenboer, S. et al. Pleiotropic syndrome of dehydrated hereditary stomatocytosis, pseudohyperkalemia, and perinatal edema maps to 16q23-q24. Blood 96, 2599–2605 (2000).

Syfuss, P. Y. et al. Mild dehydrated hereditary stomatocytosis revealed by marked hepatosiderosis. Clin. Lab. Haematol. 28, 270–274 (2006).

Carella, M. et al. Genomewide search for dehydrated hereditary stomatocytosis (hereditary xerocytosis): mapping of locus to chromosome 16 (16q23-qter). Am. J. Hum. Genet. 63, 810–816 (1998).

Beaurain, G. et al. Dehydrated hereditary stomatocytosis mimicking familial hyperkalaemic hypertension: clinical and genetic investigation. Eur. J. Haematol. 78, 253–259 (2007).

Houston, B. L. et al. Refinement of the hereditary xerocytosis locus on chromosome 16q in a large Canadian kindred. Blood Cells Mol. Dis. 47, 226–231 (2011).

Zarychanski, R. et al. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120, 1908–1915 (2012).

Carella, M. et al. A second locus mapping to 2q35-36 for familial pseudohyperkalaemia. Eur. J. Hum. Genet. 12, 1073–1076 (2004).

Carella, M. et al. Genetic heterogeneity of hereditary stomatocytosis syndromes showing pseudohyperkalemia. Haematologica 84, 862–863 (1999).

Andolfo, I. et al. Missense mutations in the ABCB6 transporter cause dominant familialpseudohyperkalemia. Am. J. Hematol. 88, 66–72 (2013).

Coste, B. et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483, 176–181 (2012).

Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

McHugh, B. J. Murdoch, A. Haslett, C. & Sethi, T. Loss of the integrin-activating transmembrane protein Fam38A (Piezo1) promotes a switch to a reduced integrin-dependent mode of cell migration. PLoS ONE 7, e40346 (2012).

Eisenhoffer, G. T. et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546–549 (2012).

Kim, S. E. Coste, B. Chadha, A. Cook, B. & Patapoutian, A. The role of Drosophila Piezo in mechanical nociception. Nature 483, 209–212 (2012).

Ball, E. V. et al. Microdeletions and microinsertions causing human genetic disease: common mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum. Mutat. 26, 205–213 (2005).

Lew, V. L. & Bookchin, R. M. Ion transport pathology in the mechanism of sickle cell dehydration. Physiol. Rev. 85, 179–200 (2005).

Maher, A. D. & Kuchel, P. W. The Gárdos channel: a review of the Ca2+-activated K+ channel in human erythrocytes. Int. J. Biochem. Cell Biol. 35, 1182–1197 (2003).

Stewart, G. W. Hemolytic disease due to membrane ion channel disorders. Curr. Opin. Hematol. 11, 244–250 (2004).

McHugh, B. J. et al. Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic reticulum. J. Cell Sci. 123, 51–61 (2010).

Mohandas, N. & Gallagher, P. G. Red cell membrane: past, present, and future. Blood 112, 3939–3948 (2008).

Bruce, L. J. Hereditary stomatocytosis and cation leaky red cells — recent developments. Blood Cells Mol. Dis. 42, 216–222 (2009).

Bruce, L. J. et al. The monovalent cation leak in overhydrated stomatocytic red blood cells results from amino acid substitutions in the Rh-associated glycoprotein. Blood 113, 1350–1357 (2009).

Huang, M. Gu, G. Ferguson, E. L. & Chalfie, M. A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378, 292–295 (1995).

Martinez-Salgado, C. et al. Stomatin and sensory neuron mechanotransduction. J. Neurophysiol. 98, 3802–3808 (2007).

Wetzel, C. et al. A stomatin-domain protein essential for touch sensation in the mouse. Nature 445, 206–209 (2007).

Vandorpe, D. H. et al. Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes. PLoS ONE 5, e8732 (2010).

Gottlieb, P. A. Bae, C. & Sachs, F. Gating the mechanical channel Piezo1: a comparison between whole-cell and patch recording. Channels 6, 282–289 (2012).

Gottlieb, P. A. & Sachs, F. Piezo1: properties of a cation selective mechanical channel. Channels 6, 214–219 (2012).

Bae, C. Gnanasambandam, R. Nicolai, C. Sachs, F. & Gottlieb, P. A. Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1. Proc. Nat. Acad. Sci. 110, E1162–E1168 (2013).

Andolfo, I. et al. Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood doi:10.1182/blood-2013-02-482489 (2013).

Martinaud, C. et al. Antiphospholipid antibodies in a family with dehydrated hereditary stomatocytosis. Thromb. Res. 122, 572–575 (2008).

Carli, P. Graffin, B. Gisserot, O. Landais, C. & De Jaureguiberry, J. P. Maladie thromboembolique récidivante après splénectomie pour stomatocytose héréditaire. La Revue de Médecine Interne 28, 879–881 (2007).

Clark, M. Mohandas, N. & Shohet, S. Osmotic gradient ektacytometry: comprehensive characterization of red cell volume and surface maintenance. Blood 61, 899–910 (1983).

Rocha, S. et al. Erythrocyte membrane protein destabilization versus clinical outcome in 160 Portuguese hereditary spherocytosis patients. Br. J. Haematol. 149, 785–794 (2010).

Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotech. 27, 182–189 (2009).