Degradation of Pollutants from Sanitizer Industries via Advanced Oxidation Processes: Comparison Between Classical and Electrochemical Systems
Tóm tắt
In this work, we investigated the degradation of the mixture of acid yellow 36 and acid blue 80 via photoperoxidation (PP/UV-C) and via electrochemical oxidation (EAOP). After optimization, the best results were obtained using [H2O2] = 80 mg‧L−1 for PP/UV-C and concentrations of 0.05 mol∙L−1 of the electrolytes (Na2SO4 and KCl) for EAOP/UV-C. For PP/UV-C, complete degradation of the monitored groups was obtained for all 3 λ. For the electrochemical systems, the higher degradation efficiency was achieved by using UV-C radiation associated with the electrochemical absorption process (EAOP/UV-C), reaching 75% for 267 nm and 100% for the other λ from 180 min. A kinetic monitoring by HPLC analytical technique was performed in order to visualize the possible reaction intermediates, as well as the consumption of H2O2 and the production of chlorine compounds as oxidizing agents of the applied processes. The toxicity evaluation against Nasturtium officinale, Daucus carota subsp. Sativus, and Thymus vulgar seeds and for Escherichia coli showed the presence of intermediate species of the dyes due to a certain degree of post-treatment toxicity. It was concluded that the use of the PP/UV-C and EAOP processes was efficient for the degradation of the dyes studied, although the system must be further improved to achieve better mineralization.
Tài liệu tham khảo
Aguilar, Z. G., Brillas, E., Salazar, M., Nava, J. L., & Sirés, I. (2017). Evidence of Fenton-like reaction with active chlorine during the electrocatalytic oxidation of acid yellow 36 azo dye with Ir-Sn-Sb oxide anode in the presence of iron ion. Applied Catalysis b: Environmental, 206, 44–52. https://doi.org/10.1016/j.apcatb.2017.01.006
Ahmadi, S., & Ganjidoust, H. (2021). Using banana peel waste to synthesize BPAC/ZnO nanocomposite for photocatalytic degradation of Acid Blue 25: Influential parameters, mineralization, biodegradability studies. Journal of Environmental Chemical Engineering, 9(5), 106010. https://doi.org/10.1016/j.jece.2021.106010
Ama, O. M., & Arotiba, O. A. (2017). Exfoliated graphite/titanium dioxide for enhanced photoelectrochemical degradation of methylene blue dye under simulated visible light irradiation. Journal of Electroanalytical Chemistry, 803, 157–164. https://doi.org/10.1016/j.jelechem.2017.09.015
Boczkaj, G., & Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal, 320, 608–633. https://doi.org/10.1016/j.cej.2017.03.084
Brito, C. N., Silva, D. R., Garcia-Segura, S., Moura, D. C., & Martínez-Huitle, C. A. (2016). Indirect electrochemical oxidation of reactive blue 19 dye as a model organic substrate: Role of anode material and oxidants electrochemically generated. Journal of the Electrochemical Society, 163(3), E62–E69. https://doi.org/10.1149/2.0191603jes
Chan, K. H., & Chu, W. (2003). Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere, 51, 305–311. https://doi.org/10.1016/S0045-6535(02)00812-3
Charamba, L. V. C., Santana, R. M. D. R., Do Nascimento, G. E., Charamba, B. V. C., De Moura, M. C., Coelho, L. C. B. B., De Oliveira, J. G. C., Duarte, M. M. M. B., & Napoleão, D. C. (2018). Application of the advanced oxidative process on the degradation of the green leaf and purple açaí food dyes with kinetic monitoring and artificial neural network modelling. Water Science and Technology, 78, 1094–1103. https://doi.org/10.2166/wst.2018.391
Chen W, Li W, Liu F, Miao D, Ma L, Gao X, Wei Q, Zhou K, Yu Z, Yu Y (2020) Microstructure of boron doped diamond electrodes and studies on its basic electrochemical characteristics and applicability of dye degradation. J Environ Chem Eng. 8(5). doi:https://doi.org/10.1016/j.jece.2020.104348
Costa JG R, Costa JM, Almeida Neto AF. 2021. Recent advances and future applications in electro-adsorption technology: An updated review. J Environ Chem Eng, 9(6). https://doi.org/10.1016/j.jece.2021.106355
Filip J, Najmanová P (2020) Advanced nano-bio technologies for water and soil treatment
Gao, Y. Qiong, Gao, N. Yun, Chen, J. Xiang, Zhang, J., & Yin, D. Qiang (2020) Oxidation of Β-blocker atenolol by a combination of UV light and chlorine: Kinetics, degradation pathways and toxicity assessment. Separation and Purification Technology, 231, 115927. https://doi.org/10.1016/j.seppur.2019.115927
Gomes, R. K. M., Santana, R. M. R., Moraes, N. F. S., Santos Júnior, S. G., de Lucena, A. L. A., Zaidan, L. E. M. C., Elihimas, D. R. M., & Napoleão, D. C. (2021). Treatment of direct black 22 azo dye in led reactor using ferrous sulfate and iron waste for Fenton process: Reaction kinetics, toxicity and degradation prediction by artificial neural networks. Chemical Papers. https://doi.org/10.1007/s11696-020-01451-4
He, J., Yang, X., Men, B., & Wang, D. (2016). Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review. Journal of Environmental Sciences (china), 39, 97–109. https://doi.org/10.1016/j.jes.2015.12.003
Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2015). Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review. Chemical Reviews, 115(24), 13362–13407. https://doi.org/10.1021/acs.chemrev.5b00361
Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118–131. https://doi.org/10.1016/j.watres.2018.03.042
Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis b: Environmental, 202, 217–261. https://doi.org/10.1016/j.apcatb.2016.08.037
Nascimento, G. E., Napoleão, D. C., Santana, R. M. R., Charamba, L. V. C., Oliveira, J. G. C., Moura, M. C., Coelho, L. C. B. B., & Duarte, M. M. M. B. (2018). Degradation of textile dyes Remazol Yellow Gold and reactive Turquoise: Optimization, toxicity and modeling by artificial neural networks. Water Science and Technology, 3, 812–823. https://doi.org/10.2166/wst.2018.251
Nascimento, G. E., Oliveira, M. A. S., Rocha Santana, R. M., Ribeiro, B. G., Sales, D. C. S., Rodríguez-Díaz, J. M., Napoleão, D. C., da Motta Sobrinho, M. A., & Duarte, M. M. M. B. (2020). Investigation of paracetamol degradation using LED and UV-C photo-reactors. Water Science and Technology, 81(12), 2545–2558. https://doi.org/10.2166/wst.2020.310
Oliveira, M. A. S., Neves, N. S. C. S., Santana, R. M. R., Lucena, A., Zaidan, L. E. M. C., Cavalcanti, V. O. M., Silva, G. L., & Napoleão, D. C. (2021). Employment of advanced oxidation processes in the degradation of a textile dye mixture: Evaluation of reaction parameters, kinetic study, toxicity and modeling by artificial neural networks. Rev Eletrônica Gest, Educ e Tecn Amb, 25(12), 1–31. https://doi.org/10.5902/2236117063909
Parsa, J. B., Rezaei, M., & Soleymani, A. R. (2009). Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics. Journal of Hazardous Materials, 168, 997–1003. https://doi.org/10.1016/j.jhazmat.2009.02.134
Pouran, S. R., Bayrami, A., Shafeeyan, M. S., Raman, A. A. A., & Daud, W. M. A. W. (2018). A comparative study on a cationic dye removal through homogeneous and heterogeneous fenton oxidation systems. Acta Chimica Slovenica, 65, 166–171. https://doi.org/10.17344/acsi.2017.3732
Salazar, R., Ureta-Zañartu, M. S., González-Vargas, C., Brito, C. N., & Martinez-Huitle, C. A. (2018). Electrochemical degradation of industrial textile dye disperse yellow 3: Role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway. Chemosphere, 198, 21–29. https://doi.org/10.1016/j.chemosphere.2017.12.092
Sandoval, A., Hernández-Ventura, C., & Klimova, T. E. (2017). Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis. Fuel, 198, 22–30. https://doi.org/10.1016/j.fuel.2016.11.007
Santos, D. H. S., Duarte, J. L. S., Tavares, M. G. R., Tavares, M. G., Friedrich, L. C., Meili, L., Pimentel, W. R. O., Tonholo, J., & Zanta, C. L. P. S. (2020). Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes. Chem Eng Process - Process Intensif, 153, 107940. https://doi.org/10.1016/j.cep.2020.107940
Sethulekshmi, S., & Chakraborty, S. (2021). Textile wastewater treatment using horizontal flow constructed wetland and effect of length of flow in operation efficiency. Journal of Environmental Chemical Engineering, 9(6), 106379. https://doi.org/10.1016/j.jece.2021.106379
Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environmental Management, 93, 154–168. https://doi.org/10.1016/j.jenvman.2011.09.012
Young, B. J., Riera, N. I., Beily, M. E., Bres, P. A., Crespo, D. C., & Ronco, A. E. (2012). Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicology and Environmental Safety, 76, 182–186. https://doi.org/10.1016/j.ecoenv.2011.09.019