Degradation of Pollutants from Sanitizer Industries via Advanced Oxidation Processes: Comparison Between Classical and Electrochemical Systems

Water, Air, and Soil Pollution - Tập 233 - Trang 1-16 - 2022
Naiana Santos Cruz Santana Neves1, Vanessa de Oliveira Marques Cavalcanti1, Ingrid Larissa da Silva Santana1, Maressa Maria de Melo Santos Moura1, Isis Henriqueta dos Reis Ferreira1, Joan Manuel Rodriguez-Diaz2, Mohand Benachour1, Daniella Carla Napoleão1
1Chemical Engineering Department, Universidade Federal de Pernambuco, Recife, Brazil
2Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador

Tóm tắt

In this work, we investigated the degradation of the mixture of acid yellow 36 and acid blue 80 via photoperoxidation (PP/UV-C) and via electrochemical oxidation (EAOP). After optimization, the best results were obtained using [H2O2] = 80 mg‧L−1 for PP/UV-C and concentrations of 0.05 mol∙L−1 of the electrolytes (Na2SO4 and KCl) for EAOP/UV-C. For PP/UV-C, complete degradation of the monitored groups was obtained for all 3 λ. For the electrochemical systems, the higher degradation efficiency was achieved by using UV-C radiation associated with the electrochemical absorption process (EAOP/UV-C), reaching 75% for 267 nm and 100% for the other λ from 180 min. A kinetic monitoring by HPLC analytical technique was performed in order to visualize the possible reaction intermediates, as well as the consumption of H2O2 and the production of chlorine compounds as oxidizing agents of the applied processes. The toxicity evaluation against Nasturtium officinale, Daucus carota subsp. Sativus, and Thymus vulgar seeds and for Escherichia coli showed the presence of intermediate species of the dyes due to a certain degree of post-treatment toxicity. It was concluded that the use of the PP/UV-C and EAOP processes was efficient for the degradation of the dyes studied, although the system must be further improved to achieve better mineralization.

Tài liệu tham khảo

Aguilar, Z. G., Brillas, E., Salazar, M., Nava, J. L., & Sirés, I. (2017). Evidence of Fenton-like reaction with active chlorine during the electrocatalytic oxidation of acid yellow 36 azo dye with Ir-Sn-Sb oxide anode in the presence of iron ion. Applied Catalysis b: Environmental, 206, 44–52. https://doi.org/10.1016/j.apcatb.2017.01.006 Ahmadi, S., & Ganjidoust, H. (2021). Using banana peel waste to synthesize BPAC/ZnO nanocomposite for photocatalytic degradation of Acid Blue 25: Influential parameters, mineralization, biodegradability studies. Journal of Environmental Chemical Engineering, 9(5), 106010. https://doi.org/10.1016/j.jece.2021.106010 Ama, O. M., & Arotiba, O. A. (2017). Exfoliated graphite/titanium dioxide for enhanced photoelectrochemical degradation of methylene blue dye under simulated visible light irradiation. Journal of Electroanalytical Chemistry, 803, 157–164. https://doi.org/10.1016/j.jelechem.2017.09.015 Boczkaj, G., & Fernandes, A. (2017). Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal, 320, 608–633. https://doi.org/10.1016/j.cej.2017.03.084 Brito, C. N., Silva, D. R., Garcia-Segura, S., Moura, D. C., & Martínez-Huitle, C. A. (2016). Indirect electrochemical oxidation of reactive blue 19 dye as a model organic substrate: Role of anode material and oxidants electrochemically generated. Journal of the Electrochemical Society, 163(3), E62–E69. https://doi.org/10.1149/2.0191603jes Chan, K. H., & Chu, W. (2003). Modeling the reaction kinetics of Fenton’s process on the removal of atrazine. Chemosphere, 51, 305–311. https://doi.org/10.1016/S0045-6535(02)00812-3 Charamba, L. V. C., Santana, R. M. D. R., Do Nascimento, G. E., Charamba, B. V. C., De Moura, M. C., Coelho, L. C. B. B., De Oliveira, J. G. C., Duarte, M. M. M. B., & Napoleão, D. C. (2018). Application of the advanced oxidative process on the degradation of the green leaf and purple açaí food dyes with kinetic monitoring and artificial neural network modelling. Water Science and Technology, 78, 1094–1103. https://doi.org/10.2166/wst.2018.391 Chen W, Li W, Liu F, Miao D, Ma L, Gao X, Wei Q, Zhou K, Yu Z, Yu Y (2020) Microstructure of boron doped diamond electrodes and studies on its basic electrochemical characteristics and applicability of dye degradation. J Environ Chem Eng. 8(5). doi:https://doi.org/10.1016/j.jece.2020.104348 Costa JG R, Costa JM, Almeida Neto AF. 2021. Recent advances and future applications in electro-adsorption technology: An updated review. J Environ Chem Eng, 9(6). https://doi.org/10.1016/j.jece.2021.106355 Filip J, Najmanová P (2020) Advanced nano-bio technologies for water and soil treatment Gao, Y. Qiong, Gao, N. Yun, Chen, J. Xiang, Zhang, J., & Yin, D. Qiang (2020) Oxidation of Β-blocker atenolol by a combination of UV light and chlorine: Kinetics, degradation pathways and toxicity assessment. Separation and Purification Technology, 231, 115927. https://doi.org/10.1016/j.seppur.2019.115927 Gomes, R. K. M., Santana, R. M. R., Moraes, N. F. S., Santos Júnior, S. G., de Lucena, A. L. A., Zaidan, L. E. M. C., Elihimas, D. R. M., & Napoleão, D. C. (2021). Treatment of direct black 22 azo dye in led reactor using ferrous sulfate and iron waste for Fenton process: Reaction kinetics, toxicity and degradation prediction by artificial neural networks. Chemical Papers. https://doi.org/10.1007/s11696-020-01451-4 He, J., Yang, X., Men, B., & Wang, D. (2016). Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review. Journal of Environmental Sciences (china), 39, 97–109. https://doi.org/10.1016/j.jes.2015.12.003 Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2015). Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: A critical review. Chemical Reviews, 115(24), 13362–13407. https://doi.org/10.1021/acs.chemrev.5b00361 Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118–131. https://doi.org/10.1016/j.watres.2018.03.042 Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis b: Environmental, 202, 217–261. https://doi.org/10.1016/j.apcatb.2016.08.037 Nascimento, G. E., Napoleão, D. C., Santana, R. M. R., Charamba, L. V. C., Oliveira, J. G. C., Moura, M. C., Coelho, L. C. B. B., & Duarte, M. M. M. B. (2018). Degradation of textile dyes Remazol Yellow Gold and reactive Turquoise: Optimization, toxicity and modeling by artificial neural networks. Water Science and Technology, 3, 812–823. https://doi.org/10.2166/wst.2018.251 Nascimento, G. E., Oliveira, M. A. S., Rocha Santana, R. M., Ribeiro, B. G., Sales, D. C. S., Rodríguez-Díaz, J. M., Napoleão, D. C., da Motta Sobrinho, M. A., & Duarte, M. M. M. B. (2020). Investigation of paracetamol degradation using LED and UV-C photo-reactors. Water Science and Technology, 81(12), 2545–2558. https://doi.org/10.2166/wst.2020.310 Oliveira, M. A. S., Neves, N. S. C. S., Santana, R. M. R., Lucena, A., Zaidan, L. E. M. C., Cavalcanti, V. O. M., Silva, G. L., & Napoleão, D. C. (2021). Employment of advanced oxidation processes in the degradation of a textile dye mixture: Evaluation of reaction parameters, kinetic study, toxicity and modeling by artificial neural networks. Rev Eletrônica Gest, Educ e Tecn Amb, 25(12), 1–31. https://doi.org/10.5902/2236117063909 Parsa, J. B., Rezaei, M., & Soleymani, A. R. (2009). Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics. Journal of Hazardous Materials, 168, 997–1003. https://doi.org/10.1016/j.jhazmat.2009.02.134 Pouran, S. R., Bayrami, A., Shafeeyan, M. S., Raman, A. A. A., & Daud, W. M. A. W. (2018). A comparative study on a cationic dye removal through homogeneous and heterogeneous fenton oxidation systems. Acta Chimica Slovenica, 65, 166–171. https://doi.org/10.17344/acsi.2017.3732 Salazar, R., Ureta-Zañartu, M. S., González-Vargas, C., Brito, C. N., & Martinez-Huitle, C. A. (2018). Electrochemical degradation of industrial textile dye disperse yellow 3: Role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway. Chemosphere, 198, 21–29. https://doi.org/10.1016/j.chemosphere.2017.12.092 Sandoval, A., Hernández-Ventura, C., & Klimova, T. E. (2017). Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis. Fuel, 198, 22–30. https://doi.org/10.1016/j.fuel.2016.11.007 Santos, D. H. S., Duarte, J. L. S., Tavares, M. G. R., Tavares, M. G., Friedrich, L. C., Meili, L., Pimentel, W. R. O., Tonholo, J., & Zanta, C. L. P. S. (2020). Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes. Chem Eng Process - Process Intensif, 153, 107940. https://doi.org/10.1016/j.cep.2020.107940 Sethulekshmi, S., & Chakraborty, S. (2021). Textile wastewater treatment using horizontal flow constructed wetland and effect of length of flow in operation efficiency. Journal of Environmental Chemical Engineering, 9(6), 106379. https://doi.org/10.1016/j.jece.2021.106379 Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environmental Management, 93, 154–168. https://doi.org/10.1016/j.jenvman.2011.09.012 Young, B. J., Riera, N. I., Beily, M. E., Bres, P. A., Crespo, D. C., & Ronco, A. E. (2012). Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicology and Environmental Safety, 76, 182–186. https://doi.org/10.1016/j.ecoenv.2011.09.019