Degenerate parabolic stochastic partial differential equations
Tài liệu tham khảo
Amann, 2000, Compact embeddings of vector-valued Sobolev and Besov spaces, Glas. Mat. Ser. III, 35, 161
Ambrosio, 2000
Brzeźniak, 2007, Strong solutions to stochastic wave equations with values in Riemannian manifolds, J. Funct. Anal., 253, 449, 10.1016/j.jfa.2007.03.034
Carrillo, 1999, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147, 269, 10.1007/s002050050152
Chen, 2003, Well-posedness for non-isotropic degenerate parabolic–hyperbolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20, 645, 10.1016/S0294-1449(02)00014-8
Chung, 1990
Cohn, 1980
Da Prato, 1992, vol. 44
Debussche, 2010, Scalar conservation laws with stochastic forcing, J. Funct. Anal., 259, 1014, 10.1016/j.jfa.2010.02.016
DiPerna, 1989, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 511, 10.1007/BF01393835
Edwards, 1965
Feng, 2008, Stochastic scalar conservation laws, J. Funct. Anal., 255, 313, 10.1016/j.jfa.2008.02.004
Flandoli, 1995, Martingale and stationary solutions for stochastic Navier–Stokes equations, Probab. Theory Related Fields, 102, 367, 10.1007/BF01192467
Freidlin, 1968, On the factorization of nonnegative definite matrices, Theory Probab. Appl., 13, 354, 10.1137/1113046
Gagneux, 1996
Gyöngy, 1996, Existence of strong solutions for Itô’s stochastic equations via approximations, Probab. Theory Related Fields, 105, 143, 10.1007/BF01203833
Gyöngy, 2000, On Lp-solutions of semilinear stochastic partial differential equations, Stochastic Process. Appl., 90, 83, 10.1016/S0304-4149(00)00033-8
Hofmanová, 2013, Strong solutions of semilinear stochastic partial differential equations, NoDEA Nonlinear Differential Equations Appl., 20, 757, 10.1007/s00030-012-0178-x
Hofmanová, 2012, On weak solutions of stochastic differential equations, Stoch. Anal. Appl., 30, 100, 10.1080/07362994.2012.628916
Imbert, 2004, A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications, SIAM J. Math. Anal., 36, 214, 10.1137/S003614100342468X
Kružkov, 1970, First order quasilinear equations with several independent variables, Mat. Sb., 81, 228
Lions, 1969
Lions, 1991, Formulation cinétique des lois de conservation scalaires multidimensionnelles, C. R. Acad. Sci., Paris Sér. I, 97
Lions, 1994, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7, 169, 10.1090/S0894-0347-1994-1201239-3
Ondreját, 2010, Stochastic nonlinear wave equations in local Sobolev spaces, Electron. J. Probab., 15, 1041, 10.1214/EJP.v15-789
Perthame, 1998, Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pures Appl.(9), 77, 1055, 10.1016/S0021-7824(99)80003-8
Perthame, 2002, vol. 21
Philips, 1968, Elliptic–parabolic equations of the second order, J. Math. Mech., 17, 891
Samko, 1993
Triebel, 1978
Triebel, 1992