Degenerate parabolic stochastic partial differential equations

Stochastic Processes and their Applications - Tập 123 - Trang 4294-4336 - 2013
Martina Hofmanová

Tài liệu tham khảo

Amann, 2000, Compact embeddings of vector-valued Sobolev and Besov spaces, Glas. Mat. Ser. III, 35, 161 Ambrosio, 2000 Brzeźniak, 2007, Strong solutions to stochastic wave equations with values in Riemannian manifolds, J. Funct. Anal., 253, 449, 10.1016/j.jfa.2007.03.034 Carrillo, 1999, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147, 269, 10.1007/s002050050152 Chen, 2003, Well-posedness for non-isotropic degenerate parabolic–hyperbolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20, 645, 10.1016/S0294-1449(02)00014-8 Chung, 1990 Cohn, 1980 Da Prato, 1992, vol. 44 Debussche, 2010, Scalar conservation laws with stochastic forcing, J. Funct. Anal., 259, 1014, 10.1016/j.jfa.2010.02.016 DiPerna, 1989, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 511, 10.1007/BF01393835 Edwards, 1965 Feng, 2008, Stochastic scalar conservation laws, J. Funct. Anal., 255, 313, 10.1016/j.jfa.2008.02.004 Flandoli, 1995, Martingale and stationary solutions for stochastic Navier–Stokes equations, Probab. Theory Related Fields, 102, 367, 10.1007/BF01192467 Freidlin, 1968, On the factorization of nonnegative definite matrices, Theory Probab. Appl., 13, 354, 10.1137/1113046 Gagneux, 1996 Gyöngy, 1996, Existence of strong solutions for Itô’s stochastic equations via approximations, Probab. Theory Related Fields, 105, 143, 10.1007/BF01203833 Gyöngy, 2000, On Lp-solutions of semilinear stochastic partial differential equations, Stochastic Process. Appl., 90, 83, 10.1016/S0304-4149(00)00033-8 Hofmanová, 2013, Strong solutions of semilinear stochastic partial differential equations, NoDEA Nonlinear Differential Equations Appl., 20, 757, 10.1007/s00030-012-0178-x Hofmanová, 2012, On weak solutions of stochastic differential equations, Stoch. Anal. Appl., 30, 100, 10.1080/07362994.2012.628916 Imbert, 2004, A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications, SIAM J. Math. Anal., 36, 214, 10.1137/S003614100342468X Kružkov, 1970, First order quasilinear equations with several independent variables, Mat. Sb., 81, 228 Lions, 1969 Lions, 1991, Formulation cinétique des lois de conservation scalaires multidimensionnelles, C. R. Acad. Sci., Paris Sér. I, 97 Lions, 1994, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7, 169, 10.1090/S0894-0347-1994-1201239-3 Ondreját, 2010, Stochastic nonlinear wave equations in local Sobolev spaces, Electron. J. Probab., 15, 1041, 10.1214/EJP.v15-789 Perthame, 1998, Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pures Appl.(9), 77, 1055, 10.1016/S0021-7824(99)80003-8 Perthame, 2002, vol. 21 Philips, 1968, Elliptic–parabolic equations of the second order, J. Math. Mech., 17, 891 Samko, 1993 Triebel, 1978 Triebel, 1992