Xác định sự hợp tác liên ngành dựa trên niềm tin và thực tiễn của giáo viên trung học về tích hợp STEM thông qua một hệ thống thiết kế phức tạp

International Journal of STEM Education - Tập 7 - Trang 1-17 - 2020
Hui-Hui Wang1, Mingla Charoenmuang2, Neil A. Knobloch2, Roger L. Tormoehlen2
1Department of Agricultural Sciences Education and Communication, Purdue University, West Lafayette, USA
2Purdue University, West Lafayette, USA

Tóm tắt

Niềm tin của giáo viên đóng vai trò quan trọng trong cách giáo viên suy nghĩ về cách học của học sinh, cũng như cách tổ chức và giảng dạy nội dung. Tích hợp STEM đang đẩy lùi những giả định truyền thống trong giáo dục—các khóa học theo môn học, các khóa học được giảng dạy độc lập bởi giáo viên, nêu rõ tiêu chuẩn và nội dung, và không có thời gian lên kế hoạch hợp tác cho giáo viên. Sáu giáo viên, tại hai trường trung học, đã tham gia một chương trình kéo dài một năm để phát triển sự hợp tác liên ngành nhằm thực hiện việc học tích hợp STEM trong các khóa học của họ. Một nghiên cứu trường hợp định tính đã được thực hiện với hai đội giáo viên để thu thập thông tin và hiểu biết về những niềm tin và thực tiễn giảng dạy của giáo viên về việc tích hợp STEM thông qua các phương pháp liên ngành trong một hệ thống phức tạp (tức là, thủy canh). Các chủ đề liên quan đến các đặc điểm, niềm tin và thực tiễn, cùng những thách thức đã phát sinh từ phân tích trường hợp chéo các câu chuyện của giáo viên, dẫn tới hai mô hình hợp tác liên ngành, hoạt động nhiều lớp và hoạt động ngoại khóa, từ mỗi đội tại hai trường trung học. Các mô hình hoạt động nhiều lớp và hoạt động ngoại khóa có một số điểm tương đồng, nhưng cũng có sự khác biệt. Cả hai trường hợp đều có cùng mục tiêu là sử dụng các vấn đề thực tế để giúp học sinh thấy được mối liên hệ của STEM, học kiến thức và kỹ năng STEM, cũng như áp dụng kiến thức và kỹ năng STEM để giải quyết các vấn đề thực tế. Dựa trên niềm tin của giáo viên và các thực hành hợp tác STEM liên ngành của họ, ba thành phần đã được xác định. Quy mô nhóm, mục tiêu giảng dạy, và cấu trúc hợp tác ảnh hưởng mạnh mẽ đến một mô hình hợp tác STEM liên ngành thành công trong các môi trường trung học. Nghiên cứu cũng góp phần mở rộng khái niệm về một chuỗi liên tục các phương pháp STEM để tích hợp chương trình giảng dạy, gồm môn học, đa ngành, liên ngành, và xuyên ngành (Vasquez, Sneider, & Comer, các yếu tố thiết yếu của bài học STEM: Tích hợp khoa học, công nghệ, kỹ thuật và toán học, 2013), và cung cấp các khuôn khổ cho việc cấu trúc một mô hình hợp tác liên ngành thành công trong các môi trường trung học.

Từ khóa


Tài liệu tham khảo

Al Salami, M. K., Makela, C. J., & de Miranda, M. A. (2015). Assessing changes in teachers’ attitudes toward interdisciplinary STEM teaching. International Journal of Technology and Design Education, 27(1), 63–88 https://doi.org/10.1007/s10798-015-9341-0. Asghar, A., Ellington, R., Rice, E., Johnson, F., & Prime, G. M. (2012). Supporting STEM education in secondary science contexts. Interdisciplinary Journal of Problem-Based Learning, 6(2), 85–125 https://doi.org/10.7771/1541-5015.1349. Baker, M. A., Bunch, J. C., & Kelsey, K. D. (2015). An instrumental case study of effective science integration in a traditional agricultural education program. Journal of Agricultural Education, 56(1), 221–236 https://doi.org/10.5032/jae.2015.01221. Bogdan, R. C., & Biklen, S. K. (1998). Qualitative research for education: an introduction to theory and methods. Needham Heights: Allyn and Bacon. Boyd, A. S. (2017). Social justice literacies in the English classroom: teaching practice in action. New York: Teachers College Press. Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3–11 https://doi.org/10.1111/j.1949-8594.2011.00109.x. Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2016). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). New York: Routledge. Buehl, M. M., & Alexander, P. A. (2001). Beliefs about academic knowledge. Educational Psychological Review, 13, 385–418 Retrieved from www.jstor.org/stable/23363498. Buehl, M. M., & Alexander, P. A. (2006). Examining the dual nature of epistemological beliefs. International Journal of Educational Research, 45, 28–42 https://doi.org/10.1016/j.ijer.2006.08.007. Buehl, M. M., & Beck, J. S. (2014). The relationship between teachers’ beliefs and teachers’ practices. In H. Fives & M. G. Gill (Eds.), International handbook of research on teachers’ beliefs (pp. 66–84). New York: Routledge. Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and engineering teacher, 70(1), 30–35 Retrieved from https://search.proquest.com/docview/853062675?accountid=13360. Bybee, R. W. (2013). A case for STEM education: challenges and opportunities. Arlington: National Science Teachers Association. Cantrell, P., Pekcan, G., Itani, A., & Velasquez-Bryant, N. (2006). The effects of engineering modules on student learning in middle school science classrooms. Journal of Engineering Education, 95(4), 301–309 https://doi.org/10.1002/j.2168-9830.2006.tb00905.x. Capobianco, B. M., DeLisi, J., & Radloff, J. (2017). Characterizing elementary teachers’ enactment of high-leverage practices through engineering design-based science instruction. Science Education, 102(2), 342–376 https://doi.org/10.1002/sce.21325. Capraro, M. M., & Jones, M. (2013). Interdisciplinary STEM project-based learning. In R. M. Capraro, M. M. Capraro, & J. R. Morgan (Eds.), STEM project-based learning: An integrated science, technology, engineering, and mathematics (STEM) approach (pp. 51–58). Rotterdam: Sense Publishers. Caudle, L. A., & Moran, M. J. (2012). Changes in understandings of three teachers’ beliefs and practice across time: Moving from teacher preparation to in-service teaching. Journal of Early Childhood Teacher Education, 33(1), 38–53 https://doi.org/10.1080/10901027.2011.650784. Colburn, A. (2000). An inquiry primer. Science Scope, 23(6), 42–44 Retrieved from www.jstor.org/stable/43180086. Creswell, J. W., Hanson, W. E., Plano Clark, V. L., & Morales, A. (2007). Qualitative research designs: selection and implementation. The Counseling Psychologist, 35(2), 236–264 https://doi.org/10.1177/0011000006287390. Donegan-Ritter, M. M., & Zan, B. (2018). Designing and implementing inclusive STEM activities for early childhood. In I. Management Association (Ed.), K-12 STEM education: Breakthroughs in research and practice (pp. 839–866). Hershey: IGI Global https://doi.org/10.4018/978-1-5225-3832-5.ch040. Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. Alexandria: Association for Supervision and Curriculum Development. Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103–120 https://doi.org/10.1002/j.2168-9830.2005.tb00832.x. English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(3), 1–8 https://doi.org/10.1186/s40594-016-0036-1. Fang, Z. (1996). A review of research on teacher beliefs and practices. Educational Research, 38(1), 47–65 https://doi.org/10.1080/0013188960380104. Farrell, T. S., & Ives, J. (2015). Exploring teacher beliefs and classroom practices through reflective practice: a case study. Language Teaching Research, 19(5), 594–610 https://doi.org/10.1177/1362168814541722. Flowers, N., Mertens, S. B., & Mulhall, P. F. (1999). The impact of teaming: five research-based outcomes. Middle School Journal, 31(2), 57–60 https://doi.org/10.1080/00940771.1999.11494619. Frykholm, J., & Glasson, G. (2005). Connecting science and mathematics instruction: Pedagogical content knowledge for teachers. School Science and Mathematics, 105(3), 127–141 https://doi.org/10.1111/j.1949-8594.2005.tb18047.x. Gailey, J. D., & Carroll, V. S. (1993). Toward a collaborative model for interdisciplinary teaching: business and literature. Journal of Education for Business, 69(1), 36–39 https://doi.org/10.1080/08832323.1993.10117653. Graves, L. A., Hughes, H., & Balgopal, M. M. (2016). Teaching STEM through horticulture: Implementing an edible plant curriculum at a STEM-centric elementary school. Journal of Agricultural Education, 57(3), 192–207 https://doi.org/10.5032/jae.2016.03192. Guzey, S. S., Ring-Whalen, E. A., Harwell, M., & Peralta, Y. (2019). Life STEM: a case study of life science learning through engineering design. International Journal of Science and Mathematics Education, 17(1), 23–42 https://doi.org/10.1007/s10763-017-9860-0. Guzey, S. S., Tank, K. M., Wang, H. H., Roehrig, G. H., & Moore, T. J. (2014). A high-quality professional development for teachers of grades 3-6 for implementing engineering into classrooms. Journal of School Science and Mathematics, 114(3), 139–149 https://doi.org/10.1111/ssm.12061. Hammack, R., & Ivey, T. (2017). Examining elementary teachers’ engineering self-efficacy and engineering teacher efficacy. School Science and Mathematics, 117(1-2), 52–62 https://doi.org/10.1111/ssm.12205. Hargreaves, A., & Moore, S. (2000). Curriculum integration and classroom relevance: a study of teacher’s practice. Journal of Curriculum and Supervision, 15(2), 89–112 Retrieved from http://search.ebscohost.com.ezproxy.lib.purdue.edu/login.aspx?direct=true&db=eue&AN=507739368&site=ehost-live. Hofer, B. K. (2000). Dimensionality and disciplinary differences in personal epistemology. Contemporary Educational Psychology, 25, 378–405 https://doi.org/10.1006/ceps.1999.1026. Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 3–11 https://doi.org/10.1186/s40594-016-0046-z. Kendall, A. L., & Wendell, K. B. (2012). Understanding the beliefs and perceptions of teachers who chose to implement engineering-based science instruction. San Antonio: Paper presented at the American Society for Engineering Education Annual Conference and Exposition. Knobloch, N. A. (2008). Factors of teacher beliefs related to integrating agriculture into elementary school classroom. Agriculture and Human Values, 25(4), 529–539. https://doi.org/10.1007/s10460-008-9135-z. Kurup, P. M., Li, X., Powell, G., & Brown, M. (2019). Building future primary teachers’ capacity in STEM: based on a platform of beliefs, understandings and intentions. International Journal of STEM Education, 6(10). https://doi.org/10.1186/s40594-019-0164-5. Lehman, J. R. (1994). Integrating science and mathematics: perceptions of preservice and practicing elementary teachers. School Science and Mathematics, 94(2), 58–64 https://doi.org/10.1111/j.1949-8594.1994.tb12293.x. Lesseig, K., Elliott, R., Kazemi, E., Kelly-Petersen, M., Campbell, M., Mumme, J., & Carroll, C. (2017). Leader noticing of facilitation in videocases of mathematics professional development. Journal of Mathematics Teacher Education, 20(6), 591–619 https://doi.org/10.1007/s10857-016-9346-y. Levy, S. (1992). Artificial life: a report from the frontier where computers meet biology. New York: Random House Inc.. Lim, C. P., & Chai, C. S. (2008). Teachers’ pedagogical beliefs and their planning and conduct of computer-mediated classroom lessons. British Journal of Educational Technology, 39(5), 807–828 https://doi.org/10.1111/j.1467-8535.2007.00774.x. Liu, S.-H. (2011). Factors related to pedagogical beliefs of teachers and technology integration. Computers and Education, 56(4), 1012–1022 https://doi.org/10.1016/j.compedu.2010.12.001. Lumpe, A. T., Haney, J. J., & Czerniak, C. M. (2000). Assessing teachers’ beliefs about their science teaching context. Journal of Research in Science Teaching, 37(3), 275–292 https://doi.org/10.1002/(sici)1098-2736(200003)37:3<275::aid-tea4>3.0.co;2-2. Mansour, N. (2009). Science teachers’ beliefs and practices: issues, implications and research agenda. International Journal of Environmental and Science Education, 4(1), 25–48 Retrieved from https://eric.ed.gov/?id=EJ884384. Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6(2). https://doi.org/10.1186/s40594-018-0151-2. Mason, T. C. (1996). Integrated curricula: potential and problems. Journal of Teacher Education, 47(4), 263–270 https://doi.org/10.1177/0022487196474004. McNeill, K. L., & Knight, A. M. (2013). Teachers’ pedagogical content knowledge of scientific argumentation: The impact of professional development on K-12 teachers. Science Education, 97(6), 936–972 https://doi.org/10.1002/sce.21081. Mehalik, M. M., Doppelt, Y., & Schuun, C. D. (2008). Middle-school science through design-based learning versus scripted inquiry: better overall science concept learning and equity gap reduction. Journal of Engineering Education, 97(1), 71–85 https://doi.org/10.1002/j.2168-9830.2008.tb00955.x. Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In S. Purzer, J. Strobel, & M. E. Cardella (Eds.), Engineering in pre-college settings: Synthesizing research, policy, and practices. West Lafayette: Purdue University Press. Murata, R. (2002). What does team teaching mean? A case study of interdisciplinary teaming. The Journal of Educational Research, 96(2), 67–77 https://doi.org/10.1080/00220670209598794. National Academy of Engineering & National Research Council. (2014). STEM integration in K-12 education: status, prospects, and an agenda for research. Washington, DC: The National Academies Press https://doi.org/10.17226/18612. National Research Council. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press https://doi.org/10.17226/13165. National Research Council. (2013). Next generation science standards: for states, by states. Washington, DC: The National Academics Press https://doi.org/10.17226/18290. Nespor, J. (1987). The role of beliefs in the practice of teaching. Journal of Curriculum Studies, 19(4), 317–328 https://doi.org/10.1080/0022027870190403. Pajares, M. F. (1992). Teachers’ beliefs and educational research: cleaning up a messy construct. Review of Educational Research, 62(3), 307–332 https://doi.org/10.2307/1170741. Pang, J. S., & Good, R. (2000). A Review of the Integration of Science and Mathematics: Implications for Further Research. School Science and Mathematics, 100(2), 73–82 https://doi.org/10.1111/j.1949-8594.2000.tb17239.x Parr, B., & Edwards, M. C. (2004). Inquiry-based instruction in secondary agricultural education: Problem-solving—An old friend revisited. Journal of Agricultural Education, 45(4), 106–117 https://doi.org/10.5032/jae.2004.04106. Raymond, A. M. (1997). Inconsistency between a beginning elementary school teacher’s mathematics beliefs and teaching practice. Journal for Research in Mathematics Education, 28(5), 550–576 https://doi.org/10.2307/749691. Rice, A. H., & Kitchel, T. (2017). Agriculture teachers’ integrated belief systems and its influence on their pedagogical content knowledge. Journal of Agricultural Education, 59(1), 51–69 https://doi.org/10.5032/jae.2018.01059. Richardson, K. A., Cilliers, P., & Lissack, M. (2001). Complexity science: a “gray” science for the “stuff in between”. Emergence, 3(2), 6–18 https://doi.org/10.1207/s15327000em0302_02. Saldaña, J. (2016). The coding manual for qualitative researchers (3rd ed.). Thousand Oaks: Sage Publications. Schlechty, P. C. (1990). Schools for the 21st century: leadership imperative for educational reform. San Francisco: Jossey-Bass Publishers. Sdunekv, A., & Waitz, T. (2017). Algae: The green all-rounder—an interdisciplinary teaching unit for middle school students. Florence: Paper presented at the International Conference on the New Perspectives in Science Education. Shapiro, E. J., & Dempsey, C. J. (2008). Conflict resolution in team teaching: a case study in interdisciplinary teaching. College Teaching, 56(3), 157–162 https://doi.org/10.3200/CTCH.56.3.157-162. Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research projects. Education for Information, 22(2), 63–75 https://doi.org/10.3233/efi-2004-22201. Smith, K. L., Rayfield, J., & McKim, B. R. (2015). Effective practices in STEM integration: describing teacher perceptions and instructional method use. Journal of Agricultural Education, 56(4), 183–203 https://doi.org/10.5032/jae.2015.04183. St. Clair, B., & Hough, D. L. (1992). Interdisciplinary teaching: a review of the literature. Retrieved from https://eric.ed.gov/?id=ED373056 Stake, R. E. (1994). Case studies. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 236–247). Thousand Oaks: Sage Publications. Stake, R. E. (1995). The art of case study research. Thousand oaks: Sage Publications. Tuttle, N., Kaderavek, J. N., Molitor, S., Czerniak, C. M., Johnson-Whitt, E., Bloomquist, D., et al. (2016). Investigating the impact of NGSS-aligned professional development on preK-3 teachers’ science content knowledge and pedagogy. Journal of Science Teacher Education, 27(7), 717–745 https://doi.org/10.1007/s10972-016-9484-1. Vasquez, J. A., Sneider, C., & Comer, M. (2013). STEM lesson essentials: integrating science, technology, engineering, and mathematics. Portsmouth: Heinemann. Wallace, J. J. (2007). Effects of interdisciplinary teaching team configuration upon the social bonding of middle school students. Research in Middle Level Education Online, 30(5), 1–18 https://doi.org/10.1080/19404476.2007.11462038. Wang, H. H., & Knobloch, N. A. (2018). Levels of STEM integration through Agriculture, Food, and Natural Resources. Journal of Agricultural Education, 59(3), 258–277 https://doi.org/10.5032/jae.2018.03258. Wang, H. H., Moore, T., Roehrig, G. H., & Park, M. S. (2011). STEM integration: teacher perception and practice. The Journal of Pre-College Engineering Education Research, 1(2), 1–13 https://doi.org/10.5703/1288284314636. Weinberg, A. E., & McMeeking, L. B. S. (2017). Toward meaningful interdisciplinary education: high school teachers’ views of mathematics and science integration. School Science and Mathematics, 117(5), 204–213 https://doi.org/10.1111/ssm.12224. Yadav, A., & Koehler, M. J. (2007). The role of epistemological beliefs in preservice teachers’ interpretation of video cases of early-grade literacy instruction. Journal of Technology and Teacher Education, 15(3), 335–361 Retrieved from https://www.learntechlib.org/primary/p/20998/. Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Thousand Oaks: Sage Publications. Yin, R. K. (2012). Applications of case study research (3rd ed.). Thousand Oaks: Sage Publications.