Suy giảm khả năng kiểm soát ức chế và giải quyết xung đột trong các nhiệm vụ nhận thức và vận động ở bệnh Parkinson

Springer Science and Business Media LLC - Tập 212 - Trang 371-384 - 2011
Ignacio Obeso1, Leonora Wilkinson1,2, Enrique Casabona3, Maria Luisa Bringas3, Mario Álvarez3, Lázaro Álvarez3, Nancy Pavón3, Maria-Cruz Rodríguez-Oroz4,5, Raúl Macías3, Jose A. Obeso4,5, Marjan Jahanshahi1
1Cognitive-Motor Neuroscience Group, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK
2Brain Stimulation Unit, National Institute of Neurological Disorders and Stroke, Bethesda, USA
3Movement Disorders and Neurophysiology Units, Centro Internacional de Restauración Neurológica (CIREN), La Habana, Cuba
4Department of Neurology, Clínica Universitaria and Medical School of Navarra, Neuroscience Centre, CIMA, University of Navarra, Pamplona, Spain
5Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Ministerio de Investigación y Ciencias, Barcelona, Spain

Tóm tắt

Các nghiên cứu hình ảnh gần đây trên các đối tượng khỏe mạnh với nhiệm vụ thời gian phản ứng (RT) dừng tín hiệu có điều kiện đã chỉ ra những vai trò của hạt nhân dưới đồi (STN) trong việc ức chế phản ứng và vùng vận động bổ sung trước (pre-SMA) trong việc giải quyết xung đột. Bệnh Parkinson (PD) được đặc trưng bởi sự thiếu hụt dopamine ở vùng đầu mũi và hoạt động quá mức của STN, đồng thời là sự kích hoạt thấp của pre-SMA trong quá trình vận động. Chúng tôi đã sử dụng nhiệm vụ thời gian phản ứng dừng tín hiệu có điều kiện để nghiên cứu xem PD có tạo ra những ảnh hưởng tương tự hoặc khác biệt đối với việc khởi động phản ứng, ức chế phản ứng và khởi động phản ứng trong tình huống xung đột hay không. Ngoài ra, chúng tôi còn xem xét khả năng ức chế các phản ứng ưu thế trong ba nhiệm vụ nhận thức: Stroop, tạo số ngẫu nhiên và hoàn thành câu Hayling. Bệnh nhân PD gặp khó khăn trong nhiệm vụ thời gian phản ứng dừng tín hiệu có điều kiện, với việc khởi động phản ứng trong cả các tình huống có xung đột và không có xung đột đều bị trì hoãn đáng kể, và gặp khó khăn rõ rệt trong việc ức chế các phản ứng ưu thế hoặc thói quen trên các nhiệm vụ Stroop, Hayling và tạo số ngẫu nhiên so với các đối chứng. Những kết quả này chứng minh sự tồn tại của một sự thiếu hụt ức chế tổng quát ở PD, điều này gợi ý rằng PD là một rối loạn liên quan đến ức chế cũng như kích hoạt và rằng trong các tình huống xung đột, khả năng điều khiển phản ứng là bị tổn hại.

Từ khóa

#Bệnh Parkinson #kiểm soát ức chế #giải quyết xung đột #nhiệm vụ nhận thức #vận động

Tài liệu tham khảo

Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381 Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA (2007) Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 27(14):3743–3752 Baglio F, Blasi V, Falini A, et al. (2009) Functional brain changes in early Parkinson’s disease during motor response and motor inhibition. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2008.12.009 Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–567 Beste C, Willemssen R, Saft C, Falkenstein M (2009) Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia. doi:10.1016/j.neuropsychologia.2009.09.023 Bokura H, Yamaguchi S, Kobayashi S (2005) Event-related potentials for response inhibition in Parkinson’s disease. Neuropsychologia 43:967–975. doi:10.1016/j.neuropsychologia.2004.08.010 Bouquet CA, Bonnaud V, Gil R (2003) Investigation of supervisory attentional system functions in patients with Parkinson’s disease using the Hayling task. J Clin Exp Neuropsychol 25:751–760 Brown RG, Marsden CD (1988) Internal versus external cues and the control of attention in Parkinson’s disease. Brain 111(Pt 2):323–345 Brown RG, Marsden CD (1991) Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain 114(Pt 1A):215–231 Brown RG, Soliveri P, Jahanshahi M (1998) Executive processes in Parkinson’s disease-random number generation and response suppression. Neuropsychologia 36:1355–1362 Burgess PW, Shallice T (1997) The Hayling and Brixton tests. Thames Valley Test Company Limited, Bury St Edmunds Cagigas XE, Filoteo JV, Stricker JL, Rilling LM, Friedrich FJ (2007) Flanker compatibility effects in patients with Parkinson’s disease: impact of target onset delay and trial-by-trial stimulus variation. Brain Cogn 63:247–259. doi:10.1016/j.bandc.2006.09.002 Chamberlain SR, Muller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ (2006) Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 311:861–863. doi:10.1126/science.1121218 Chamberlain SR, Del Campo N, Dowson J, Muller U, Clark L, Robbins TW, Sahakian BJ (2007) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62:977–984. doi:10.1016/j.biopsych.2007.03.003 Chamberlain SR, Hampshire A, Muller U et al (2009) Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry 65:550–555. doi:10.1016/j.biopsych.2008.10.014 Chan F, Armstrong IT, Pari G, Riopelle RJ, Munoz DP (2005) Deficits in saccadic eye-movement control in Parkinson’s disease. Neuropsychologia 43:784–796. doi:10.1016/j.neuropsychologia.2004.06.026 Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13:277–280 Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11:1136–1143 Cools R, Clark L, Owen AM, Robbins TW (2002) Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 22:4563–4567 Cools R, Barker RA, Sahakian BJ, Robbins TW (2003) L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia 41:1431–1441 Cooper JA, Sagar HJ, Tidswell P, Jordan N (1994) Slowed central processing in simple and go/no-go reaction time tasks in Parkinson’s disease. Brain 117(Pt 3):517–529 Delis DC, Kaplan E, Kramer JH (2001) Delis–Kaplan executive function scale. The Psychological Corporation, San Antonio DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285 Dirnberger G, Frith CD, Jahanshahi M (2005) Executive dysfunction in Parkinson’s disease is associated with altered pallidal-frontal processing. Neuroimage 25:588–599. doi:10.1016/j.neuroimage.2004.11.023 Eagle DM, Baunez C (2010) Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev 34:50–72 Falkenstein M, Hielscher H, Dziobek I, Schwarzenau P, Hoormann J, Sunderman B, Hohnsbein J (2001) Action monitoring, error detection, and the basal ganglia: an ERP study. Neuroreport 12:157–161 Falkenstein M, Willemssen R, Hohnsbein J, Hielscher H (2006) Effects of stimulus–response compatibility in Parkinson’s disease: a psychophysiological analysis. J Neural Transm 113:1449–1462. doi:10.1007/s00702-005-0430-1 Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198 Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in Parkinsonism. Science 318:1309–1312. doi:10.1126/science.1146157 Gauggel S, Rieger M, Feghoff TA (2004) Inhibition of ongoing responses in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:539–544 Harnishfeger KK (1995) The development of cognitive inhibition: Theories, definitions, and research evidence. In: Dempster FN, Brainerd CJ (eds) Interference and inhibition in cognition. Academic Press, San Diego Hayes AE, Davidson MC, Keele SW, Rafal RD (1998) Toward a functional analysis of the basal ganglia. J Cogn Neurosci 10:178–198 Hershey T, Revilla FJ, Wernle A, Gibson PS, Dowling JL, Perlmutter JS (2004) Stimulation of STN impairs aspects of cognitive control in PD. Neurology 62:1110–1114 Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184 Isoda M, Hikosaka O (2007) Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci 10:240–248. doi:10.1038/nn1830 Isoda M, Hikosaka O (2008) Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J Neurosci 28:7209–7218. doi:10.1523/JNEUROSCI.0487-08.2008 Jahanshahi M, Jenkins IH, Brown RG, Marsden CD, Passingham RE, Brooks DJ (1995) Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 118(Pt 4):913–933 Jahanshahi M, Profice P, Brown RG, Ridding MC, Dirnberger G, Rothwell JC (1998) The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain 121:1533–1544 Jahanshahi M, Ardouin CM, Brown RG et al (2000) The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 123(Pt 6):1142–1154 Kuhn AA, Tsui A, Aziz T et al (2009) Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol 215:380–387. doi:10.1016/j.expneurol.2008.11.008 Lee SS, Wild K, Hollnagel C, Grafman J (1999) Selective visual attention in patients with frontal lobe lesions or Parkinson’s disease. Neuropsychologia 37:595–604 Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91:295–327 Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42:183–200 Nigg JT (2000) On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychol Bull 126:220–246 Owen AM, Roberts AC, Polkey CE, Sahakian BJ, Robbins TW (1991) Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 29:993–1006 Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ (1992) Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol 32:151–161. doi:10.1002/ana.410320206 Praamstra P, Plat FM (2001) Failed suppression of direct visuomotor activation in Parkinson’s disease. J Cogn Neurosci 13:31–43 Praamstra P, Stegeman DF, Cools AR, Horstink MW (1998) Reliance on external cues for movement initiation in Parkinson’s disease. Evidence from movement-related potentials. Brain 121(Pt 1):167–177 Ray NJ, Jenkinson N, Brittain J et al (2009) The role of the subthalamic nucleus in response inhibition: evidence from deep brain stimulation for Parkinson’s disease. Neuropsychologia 47:2828–2834. doi:10.1016/j.neuropsychologia.2009.06.011 Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009–1023 Rieger M, Gauggel S (1999) Inhibitory after-effects in the stop-signal paradigm. Br J Psychol 90:509–518 Rieger M, Gauggel S, Burmeister K (2003) Inhibition of ongoing responses following frontal, nonfrontal, and basal ganglia lesions. Neuropsychology 17:272–282 Rivaud-Pechoux S, Vidailhet M, Brandel JP, Gaymard B (2007) Mixing pro- and antisaccades in patients with parkinsonian syndromes. Brain 130:256–264. doi:10.1093/brain/awl315 Schroeder U, Kuehler A, Haslinger B et al (2002) Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain 125:1995–2004 Seiss E, Praamstra P (2004) The basal ganglia and inhibitory mechanisms in response selection: evidence from subliminal priming of motor responses in Parkinson’s disease. Brain 127:330–339. doi:10.1093/brain/awh043 Seiss E, Praamstra P (2006) Time-course of masked response priming and inhibition in Parkinson’s disease. Neuropsychologia 44:869–875 Spatt J, Goldenberg G (1993) Components of random generation by normal subjects and patients with dysexecutive syndrome. Brain Cogn 23:231–242 Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662 Thobois S, Hotton GR, Pinto S, Wilkinson L, Limousin-Dowsey P, Brooks DJ, Jahanshahi M (2007) STN stimulation alters pallidal-frontal coupling during response selection under competition. J Cereb Blood Flow Metab 27:1173–1184 van den Wildenberg WP, van Boxtel GJ, van der Molen MW, Bosch DA, Speelman JD, Brunia CH (2006) Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. J Cogn Neurosci 18:626–636 Verbruggen F, Logan GD (2009a) Automaticity of cognitive control: goal priming in response-inhibition paradigms. J Exp Psychol Learn Mem Cogn 35:1381–1388. doi:10.1037/a0016645 Verbruggen F, Logan GD (2009b) Proactive adjustments of response strategies in the stop-signal paradigm. J Exp Psychol Hum Percept Perform 35:835–854. doi:10.1037/a0012726 Vila M, Levy R, Herrero MT et al (1997) Consequences of nigrostriatal denervation on the functioning of the basal ganglia in human and nonhuman primates: an in situ hybridization study of cytochrome oxidase subunit I mRNA. J Neurosci 17:765–773 Voon V, Fernagut PO, Wickens J et al (2009) Chronic dopaminergic stimulation in Parkinson’s disease: from dyskinesias to impulse control disorders. Lancet Neurol 8:1140–1149. doi:10.1016/S1474-4422(09)70287-X Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA (2007) Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130:1787–1798. doi:10.1093/brain/awm111 Witt K, Pulkowski U, Herzog J, Lorenz D, Hamel W, Deuschl G, Krack P (2004) Deep brain stimulation of the subthalamic nucleus improves cognitive flexibility but impairs response inhibition in Parkinson disease. Arch Neurol 61:697–700. doi:10.1001/archneur.61.5.697 Wylie SA, Stout JC, Bashore TR (2005) Activation of conflicting responses in Parkinson’s disease: evidence for degrading and facilitating effects on response time. Neuropsychologia 43:1033–1043 Wylie SA, van den Wildenberg WP, Ridderinkhof KR, Bashore TR, Powell VD, Manning CA, Wooten GF (2009a) The effect of Parkinson’s disease on interference control during action selection. Neuropsychologia 47:145–157. doi:10.1016/j.neuropsychologia.2008.08.001 Wylie SA, van den Wildenberg WP, Ridderinkhof KR, Bashore TR, Powell VD, Manning CA, Wooten GF (2009b) The effect of speed-accuracy strategy on response interference control in Parkinson’s disease. Neuropsychologia 47:1844–1853. doi:10.1016/j.neuropsychologia.2009.02.025