Defective Long-Distance Auxin Transport Regulation in the Medicago truncatula super numeric nodules Mutant

Oxford University Press (OUP) - Tập 140 Số 4 - Trang 1494-1506 - 2006
Giel E. van Noorden1,2, John J. Ross1,2, James B. Reid1,2, Barry G. Rolfe1,2, Ulrike Mathesius1,2
1Australian Research Council Centre of Excellence for Integrative Legume Research (G.E.v.N., B.G.R., U.M.), Genomic Interactions Group, Research School of Biological Sciences (G.E.v.N., B.G.R.), and School of Biochemistry and Molecular Biology (U.M.), the Australian National University, Canberra, Australian Capitol Territory 0200, Australia; and School of Plant Science, University of Tasmania, Hob
2School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.J.R., J.B.R.)

Tóm tắt

Abstract Long-distance auxin transport was examined in Medicago truncatula and in its supernodulating mutant sunn (super numeric nodules) to investigate the regulation of auxin transport during autoregulation of nodulation (AON). A method was developed to monitor the transport of auxin from the shoot to the root in whole seedlings. Subsequently, the transport was monitored after inoculation of roots with the nodulating symbiont Sinorhizobium meliloti. The sunn mutant showed an increased amount of auxin transported from the shoot to the root compared to the wild type. The auxin transport capacity of excised root segments was similar in wild type and sunn, suggesting that the difference in long-distance auxin transfer between them is due to loading in the shoot. After inoculation, wild-type seedlings showed decreased auxin loading from the shoot to the root; however, the sunn mutant failed to reduce the amount of auxin loaded. The time of reduced auxin loading correlated with the onset of AON. Quantification of endogenous auxin levels at the site of nodule initiation showed that sunn contained three times more auxin than wild type. Inoculation of sunn failed to reduce the level of auxin within 24 h, as was observed in the wild type. We propose a model for the role of auxin during AON of indeterminate legumes: 1) high levels of endogenous auxin are correlated with increased numbers of nodules, 2) inoculation of roots reduces auxin loading from the shoot to the root, and 3) subsequent reduction of auxin levels in the root inhibits further nodule initiation.

Từ khóa


Tài liệu tham khảo

Allen EK, Allen ON, Newman AS (1953) Pseudonodulation of leguminous plants induced by 2-bromo-3,5-dichlorobenzoic acid. Am J Bot  40  :  429–435

Baluska F, Barlow PW, Baskin TI, Chen R, Feldman L, Forde BG, Geisler M, Jernstedt J, Menzel D, Muday GK (2005) What is apical and what is basal in plant root development? Trends Plant Sci  10  :  409–411

Barker DG, Bianchi S, Blondon F, Dattee Y, Duc G, Essad S, Flament P, Gallusci P, Genier G, Guy P (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol  8  :  40–49

Beveridge CA, Symons GM, Turnbull CGN (2000) Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes rms1 and rms2. Plant Physiol  123  :  689–697

Bhuvaneswari TV, Bhagwat AA, Bauer WD (1981) Transient susceptibility of root-cells in four common legumes to nodulation by rhizobia. Plant Physiol  68  :  1144–1149

Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol  8  :  494–500

Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature  433  :  39–44

Boot KJM, van Brussel AAN, Tak T, Spaink HP, Kijne JW (1999) Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp nigra roots. Mol Plant Microbe Interact  12  :  839–844

Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol  126  :  524–535

Caba JM, Centeno ML, Fernandez B, Gresshoff PM, Ligero F (2000) Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type. Planta  211  :  98–104

Caetano-Anollés G, Bauer WD (1988) Feedback-regulation of nodule formation in alfalfa. Planta  175  :  546–557

Caetano-Anollés G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol  45  :  345–382

Caetano-Anollés G, Paparozzi ET, Gresshoff PM (1991) Mature nodules and root-tips control nodulation in soybean. J Plant Physiol  137  :  389–396

Carroll BJ, McNeil DL, Gresshoff PM (1985a) Isolation and properties of soybean Glycine max merr mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA  82  :  4162–4166

Carroll BJ, McNeil DL, Gresshoff PM (1985b) A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol  78  :  34–40

Cook DR (1999) Medicago truncatula: a model in the making! Curr Opin Plant Biol  2  :  301–304

de Billy F, Grosjean C, May S, Bennett M, Cullimore JV (2001) Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol Plant Microbe Interact  14  :  267–277

Delves AC, Mathews A, Day DA, Carter AS, Carroll BJ, Gresshoff PM (1986) Regulation of the soybean-rhizobium nodule symbiosis by shoot and root factors. Plant Physiol  82  :  588–590

Dénarié J, Debelle F, Prome JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem  65  :  503–535

Fåhraeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol  16  :  374–381

Ferguson BF, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Regul  22  :  47–72

Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, et al (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J  44  :  179–194

Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature  413  :  425–428

Gresshoff PM (1993) Molecular genetic analysis of nodulation genes in soybean. In J Janick, ed, Plant Breeding Reviews, Vol 11. Wiley Publishers, New York, pp 275–318

Handberg K, Stougaard J (1992) Lotus-japonicus, an autogamous, diploid legume species for classical and molecular-genetics. Plant J  2  :  487–496

Hirsch AM (1992) Developmental biology of legume nodulation. New Phytol  122  :  211–237

Hirsch AM, Bhuvaneswari TV, Torrey JG, Bisseling T (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA  86  :  1244–1248

Jones S, DeMeo J, Davies N, Noonan S, Ross J (2005) Stems of the Arabidopsis pin1-1 mutant are not deficient in free indole-3-acetic acid. Planta  222  :  530–534

Krusell L, Madsen LH, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, et al (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature  420  :  422–426

Libbenga KR, van Iren F, Bogers RJ, Schraag-Lamers MF (1973) Role of hormones and gradients in initiation of cortex proliferation and nodule formation in Pisum sativum L. Planta  114  :  29–39

Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Nonmanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell  17  :  1090–1104

Lohar DP, VandenBosch KA (2005) Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity. J Exp Bot  56  :  1643–1650

Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J  14  :  23–34

Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell  13  :  2441–2454

Nutman PS (1952) Studies on the physiology of nodule formation. 3. Experiments on the excision of root-tips and nodules. Ann Bot (Lond)  16  :  79–103

Oono Y, Ooura C, Rahman A, Aspuria ET, Hayashi K, Tanaka A, Uchimiya H (2003) p-Chlorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. Plant Physiol  133  :  1135–1147

Pacios-Bras C, Schlaman HRM, Boot K, Admiraal P, Langerak JM, Stougaard J, Spaink HP (2003) Auxin distribution in Lotus japonicus during root nodule development. Plant Mol Biol  52  :  1169–1180

Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science  275  :  527–530

Penmetsa RV, Frugoli JA, Smith LS, Long SR, Cook DR (2003) Dual genetic pathways controlling nodule number in Medicago truncatula.  Plant Physiol  131  :  998–1008

Roudier F, Fedorova E, Lebris M, Lecomte P, Gyorgyey J, Vaubert D, Horvath G, Abad P, Kondorosi A, Kondorosi E (2003) The Medicago species A2-type cyclin is auxin regulated and involved in meristem formation but dispensable for endoreduplication-associated developmental programs. Plant Physiol  131  :  1091–1103

Scheres B, McKhann HI, Zalensky A, Lobler M, Bisseling T, Hirsch AM (1992) The Psenod12 gene is expressed at 2 different sites in Afghanistan pea pseudonodules induced by auxin transport inhibitors. Plant Physiol  100  :  1649–1655

Schnabel E, Journet EP, Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encoding a CLV1-like leucine-rich repeat receptor kinase regulates both nodule number and root length. Plant Mol Biol  58  :  809–822

Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science  299  :  109–112

Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell  17  :  2230–2242

Streeter J (1988) Inhibition of legume nodule formation and n-2 fixation by nitrate. CRC Crit Rev Plant Sci  7  :  1–23

Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, et al (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell  17  :  2922–2939

Thimann KV (1936) On the physiology of the formation of nodules on legumes roots. Proc Natl Acad Sci USA  22  :  511–514

Udvardi MK, Tabata S, Parniske M, Stougaard J (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci  10  :  222–228

Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (Lond)  95  :  707–735

Wu CF, Dickstein R, Cary AJ, Norris JH (1996) The auxin transport inhibitor N-(1-naphthyl)phthalamic acid elicits pseudonodules on nonnodulating mutants of white sweetclover. Plant Physiol  110  :  501–510