Cách tiếp cận học sâu để thu được các khu vực lọc hợp tác

Jesús Bobadilla1, Ángel González-Prieto2, Fernando Ortega1, Raúl Lara-Cabrera1
1Departamento de Sistemas Informáticos, ETSI Sistemas Informáticos, Universidad Politécnica de Madrid, C/ Alan Turing s/n, 28031, Madrid, Spain
2Departamento de Álgebra, Geometría y Topología, Universidad Complutense de Madrid, Plaza Ciencias 3, 28040, Madrid, Spain

Tóm tắt

Tóm tắtTrong bối cảnh các hệ thống gợi ý dựa trên lọc hợp tác (CF), việc thu được những khu vực chính xác của các mục trong bộ dữ liệu là rất quan trọng. Ngoài những gợi ý cá nhân cụ thể, việc biết các hàng xóm này là điều cơ bản để thêm các yếu tố phân biệt vào các gợi ý, chẳng hạn như khả năng giải thích, phát hiện tấn công shilling, hình dung quan hệ giữa các mục, phân cụm và cung cấp độ tin cậy. Bài báo này đề xuất một kiến trúc học sâu để thu được các khu vực CF một cách hiệu quả và chính xác. Thiết kế được đề xuất sử dụng một mạng nơ-ron phân loại để mã hóa các mẫu của bộ dữ liệu các mục, sau đó là một quy trình sinh sản thu được khu vực của mỗi mục thông qua thuật toán phân vùng gradient lặp lại. Các thí nghiệm đã được thực hiện bằng cách sử dụng năm bộ dữ liệu mở phổ biến và năm đường cơ bản đại diện. Kết quả cho thấy phương pháp đề xuất cải thiện chất lượng của các khu vực so với thuật toán K-Người hàng xóm gần nhất (KNN) cho năm đường cơ sở đo sự tương đồng đã chọn. Độ hiệu quả của phương pháp đề xuất cũng được thể hiện bằng cách so sánh yêu cầu tính toán của nó với KNN.

Từ khóa

#lọc hợp tác #học sâu #khu vực gợi ý #mạng nơron phân loại #thuật toán K-Người hàng xóm gần nhất

Tài liệu tham khảo

Ahn HJ (2008) A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Inf Sci 178(1):37–51

Alashkar T, Jiang S, Wang S, Fu Y (2017) Examples-rules guided deep neural network for makeup recommendation. In: Proceedings of the AAAI conference on artificial intelligence, vol 31

Bilgic M, Mooney RJ (2005) Explaining recommendations: satisfaction versus promotion. In: Beyond personalization workshop, IUI, vol 5, p 153

Bobadilla J, González-Prieto Á, Ortega F, Lara-Cabrera R (2020) Deep learning feature selection to unhide demographic recommender systems factors. Neural Comput Appl 33:1–18

Bobadilla J, Hernando A, Ortega F, Bernal J (2011) A framework for collaborative filtering recommender systems. Expert Syst Appl 38(12):14609–14623

Bobadilla J, Ortega F, Gutiérrez A, Alonso S (2020) Classification-based deep neural network architecture for collaborative filtering recommender systems. IJIMAI 6(1):68–77. https://doi.org/10.9781/ijimai.2020.02.006

Bobadilla J, Ortega F, Hernando A, Gutiérrez A (2013) Recommender systems survey. Knowl Based Syst 46:109–132

Bobadilla J, Serradilla F, Bernal J (2010) A new collaborative filtering metric that improves the behavior of recommender systems. Knowl Based Syst 23(6):520–528

Chollet F et al (2015) Keras. https://keras.io

Chollet F et al (2018) Deep learning with python, vol 361. Manning, New York

Dara S, Chowdary CR, Kumar C (2020) A survey on group recommender systems. J Intell Inf Syst 54(2):271–295

Dziugaite GK, Roy DM (2015) Neural network matrix factorization. arXiv:1511.06443

Ebesu T, Fang Y (2017) Neural citation network for context-aware citation recommendation. In: Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval, pp 1093–1096

Feng C, Liang J, Song P, Wang Z (2020) A fusion collaborative filtering method for sparse data in recommender systems. Inf Sci 521:365–379

Gatys LA, Ecker AS, Bethge M (2016) Image style transfer using convolutional neural networks. In: 2016 IEEE conference on computer vision and pattern recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, pp 2414–2423. IEEE Computer Society. https://doi.org/10.1109/CVPR.2016.265

Gomez-Uribe CA, Hunt N (2015) The Netflix recommender system: algorithms, business value, and innovation. ACM Trans Manag Inf Syst (TMIS) 6(4):1–19

Gunes I, Kaleli C, Bilge A, Polat H (2014) Shilling attacks against recommender systems: a comprehensive survey. Artif Intell Rev 42(4):767–799

Guo G, Zhang J, Yorke-Smith N (2013) A novel bayesian similarity measure for recommender systems. In: Proceedings of the 23rd international joint conference on artificial intelligence (IJCAI), pp 2619–2625

Guo H, Tang R, Ye Y, Li Z, He X (2017) DeepFM: a factorization-machine based neural network for CTR prediction. arXiv:1703.04247

Harper FM, Konstan JA (2015) The movielens datasets: history and context. ACM Trans Interact Intell Syst 5(4):1–19

He X, Liao L, Zhang H, Nie L, Hu X, Chua TS (2017) Neural collaborative filtering. In: Proceedings of the 26th international conference on world wide web, pp 173–182

Herlocker JL, Konstan JA, Terveen LG, Riedl JT (2004) Evaluating collaborative filtering recommender systems. ACM Trans Inf Syst 22(1):5–53

Logesh R, Subramaniyaswamy V, Malathi D, Sivaramakrishnan N, Vijayakumar V (2020) Enhancing recommendation stability of collaborative filtering recommender system through bio-inspired clustering ensemble method. Neural Comput Appl 32(7):2141–2164

Logesh R, Subramaniyaswamy V, Vijayakumar V, Gao XZ, Wang GG (2020) Hybrid bio-inspired user clustering for the generation of diversified recommendations. Neural Comput Appl 32(7):2487–2506

Misztal-Radecka J, Indurkhya B (2020) Getting to know your neighbors (KYN). Explaining item similarity in nearest neighbors collaborative filtering recommendations. In: Adjunct publication of the 28th ACM conference on user modeling, adaptation and personalization, pp 59–64

Mnih A, Salakhutdinov RR (2008) Probabilistic matrix factorization. In: Advances in neural information processing systems, pp 1257–1264

Moradi P, Ahmadian S (2015) A reliability-based recommendation method to improve trust-aware recommender systems. Expert Syst Appl 42(21):7386–7398

MyAnimeList.net: MyAnimeList dataset. https://www.kaggle.com/azathoth42/myanimelist (2020). Accessed 18 May 2020

Ortega F, Lara-Cabrera R, González-Prieto Á, Bobadilla J (2021) Providing reliability in recommender systems through Bernoulli matrix factorization. Inf Sci 553:110–128

Ortega F, Zhu B, Bobadilla J, Hernando A (2018) CF4J: Collaborative filtering for Java. Knowl Based Syst 152:94–99

Pádua FL, Lacerda A, Machado AC, Dalip DH et al (2019) Multimodal data fusion framework based on autoencoders for top-n recommender systems. Appl Intell 49(9):3267–3282

Portugal I, Alencar P, Cowan D (2018) The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst Appl 97:205–227

Raza S, Ding C (2019) Progress in context-aware recommender systems—an overview. Comput Sci Rev 31:84–97

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE international conference on computer vision (ICCV) pp 618–626. https://doi.org/10.1109/ICCV.2017.74

Tahmasebi H, Ravanmehr R, Mohamadrezaei R (2020) Social movie recommender system based on deep autoencoder network using twitter data. Neural Comput Appl 33:1–17

Tang J, Wang K (2018) Personalized top-n sequential recommendation via convolutional sequence embedding. In: Proceedings of the eleventh ACM international conference on web search and data mining, pp 565–573

Tuan TX, Phuong TM (2017)3D convolutional networks for session-based recommendation with content features. In: Proceedings of the eleventh ACM conference on recommender systems, pp 138–146

Turk AM, Bilge A (2019) Robustness analysis of multi-criteria collaborative filtering algorithms against shilling attacks. Expert Syst Appl 115:386–402

Wang D, Liang Y, Xu D, Feng X, Guan R (2018) A content-based recommender system for computer science publications. Knowl Based Syst 157:1–9

Yang X, Guo Y, Liu Y, Steck H (2014) A survey of collaborative filtering based social recommender systems. Comput Commun 41:1–10

Yi B, Shen X, Zhang Z, Shu J, Liu H: Expanded autoencoder recommendation framework and its application in movie recommendation. In: 2016 10th international conference on software, knowledge, information management and applications (SKIMA). IEEE, pp 298–303 (2016)

Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system: a survey and new perspectives. ACM Comput Surv (CSUR) 52(1):1–38

Zhang S, Yao L, Xu X (2017)Autosvd++ an efficient hybrid collaborative filtering model via contractive auto-encoders. In: Proceedings of the 40th international ACM SIGIR conference on Research and development in information retrieval, pp 957–960

Zho, B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 2921–2929