Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers

Synapse - Tập 14 Số 2 - Trang 169-177 - 1993
N D Volkow1, Joanna S. Fowler, G. J. Wang, Robert Hitzemann, Jean Logan, David Schlyer, S L Dewey, Alfred P. Wolf
1Medical Department, Brookhaven National Laboratory, Upton, New York, 11973

Tóm tắt

Abstract

Decreased dopaminergic function has been postulated to underlie cocaine addiction. To examine the possibility that dysfunction of brain regions subserved by the dopamine system could promote cocaine self‐administration, positron emission tomography and a dual‐tracer approach was used to examine dopamine D2 receptor availability and regional brain glucose metabolism in cocaine abusers. When compared to normal controls, cocaine abusers showed significant decreases in dopamine D2 receptor availability which persisted 3‐4 months after detoxification. Decreases in dopamine D2 receptor availability were associated with decreased metabolism in several regions of the frontal of these brain areas which are involved in the channeling of drive and affect could lead to loss of control resulting in compulsive drug‐taking behavior. © 1993 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1111/j.1600-0404.1991.tb05018.x

10.1001/archpsyc.1987.01800150017003

Baxter L. R., 1988, Localization of neurochemical effects of cocaine and other stimulants, J. Clin. Psychiatry, 49, 23

10.1038/jcbfm.1983.3

10.1001/archneur.1990.00530070035009

10.1212/WNL.39.7.996-a

Clow D. W., 1991, Cocaine abstinence following chronic treatment alters cerebral metabolism in dopaminergic reward regions. Bromocryptine enhances recovery, Neuropsychopharmacology, 4, 71

10.1016/0149-7634(85)90022-3

10.1093/brain/108.3.785

10.1002/syn.890070409

10.1037/h0081662

Fallon J. H., 1987, Cerebral Cortex, 41

Fischman M. W., 1985, Acute tolerance development to the cardiovascular and subjective effects of cocaine, J. Pharmacol. Exp. Ther., 235, 677

10.1002/ana.410240308

10.1002/syn.890040412

Fowler J. S., 1990, Annual Reports in Medicinal Chemistry, 261

10.1001/archpsyc.1986.01800020013003

10.1056/NEJM198805053181806

10.1016/S0166-2236(84)80145-9

10.1126/science.6879176

10.1016/0091-3057(86)90252-2

10.1002/ana.410250205

Haber S. N., 1986, Neurotransmitters in the human and nonhuman primate basal ganglia, Hum. Neurobiol., 5, 159

10.1016/0278-5846(88)90035-8

Hegarty A., 1990, Cocaine as a risk factor for acute dystonic reaction (abstract), Neurology, 40, 146

Heimer L., 1985, The Rat Nervous System, 37

Hitzemann R. Burr G. Piscani K. Hazan J. Krishnamoorthy G. Cushman P. Baldwin C. H. Carrion R. Volkow N. D. Hirschowitz J. Handelsman L. Chiaramonte J. andAngrist B.Neuroendocrine and clinical features of cocaine withdrawal.Psychiatry Res.(in press).

Hoff A., 1991, Cognitive function in chronic cocaine abusers, J. Clin. Exp. Neuropsychol., 13, 60

10.1016/0165-1781(90)90070-L

10.1016/0014-2999(92)90349-9

Johanson C. E., 1989, The pharmacology of cocaine related to its abuse, Pharmacol. Rev., 41, 3

10.1007/BF00862982

10.1016/0031-9384(77)90128-7

10.1126/science.2903550

Kumor K., 1987, Haloperidol‐induced dystonia in cocaine addicts, Lancet, 2, 1341

10.1093/brain/111.3.615

10.1152/physrev.1991.71.1.155

10.1002/syn.890090306

10.1007/BF02244137

10.1001/archpsyc.1990.01810180067010

Matsui T., 1979, Anatomy of the Human Brain for Computerized Tomography

10.1002/ana.410280111

10.1038/jcbfm.1984.74

10.1176/jnp.1.1.27

10.1016/0306-4522(79)90060-5

10.1016/0165-0173(87)90011-7

10.1002/syn.890090109

10.1038/jcbfm.1983.1

10.1016/0166-2236(88)90123-3

10.1212/WNL.35.8.1127

Post R. M., 1987, Cocaine Clinical and Biobehavioral Aspects, 109

10.1016/0024-3205(91)90248-A

10.1007/BF01249445

10.1016/0006-8993(90)90423-9

Rinne U. K., 1990, Positron emission tomography demonstrates dopamine D2 receptor supersensitivity in the striatum of patients with early Parkinson's disease, J. Neurol. Neurosurg. Psychiatry, 53, 177

10.1016/0006-8993(91)90554-9

10.1126/science.2820058

10.1016/0006-8993(86)91178-9

10.1016/0091-3057(80)90166-5

10.1038/261155a0

10.1126/science.462184

10.1002/syn.890010503

Selemon L. D., 1984, Longitudinal topography and interdigitations of corticostriatal projections in the rhesus monkey, J. Neurosci., 5, 776, 10.1523/JNEUROSCI.05-03-00776.1985

10.1111/j.1471-4159.1982.tb07996.x

10.1016/0006-3223(88)90048-0

10.1111/j.1471-4159.1977.tb10649.x

Stuss D. T., 1986, The Frontal Lobes, 12

10.1192/bjp.152.5.641

10.1176/ajp.147.6.719

10.1176/ajp.148.5.621

10.1002/syn.890110303

Volkow N. D., 1992, Distribution of C‐11 cocaine in human heart, lungs liver and adrenal. A dynamic PET study, J. Nucl. Med., 33, 521

Willner P., 1991, The Mesolimbic Dopamine System: From Motivation to Action, 387

Wilson R. J., 1990, Markedly reduced striatal dopamine levels in brain of a chronic cocaine abuser, Soc. Neurosci. Abstr., 16, 252

Wise R. A., 1990, Cocaine in the Brain, 42

10.1212/WNL.35.10.1399

10.1126/science.6334363

10.1016/0165-6147(92)90063-C

10.1001/jama.259.20.2996b

10.1002/syn.890090305