Decentralized navigation method for a robotic swarm with nonhomogeneous abilities

Autonomous Robots - Tập 42 - Trang 1583-1599 - 2018
Masahiro Yoshimoto1, Takahiro Endo1, Ryuma Maeda1, Fumitoshi Matsuno1
1Department of Mechanical Engineering and Science, Kyoto University, Kyoto, Japan

Tóm tắt

This paper addresses the navigation of a robotic swarm with nonhomogeneous abilities, including sensing range, maximum velocity, and acceleration. With this method, the robotic swarm moves in a two-dimensional plane, and each follower distributedly constructs and maintains local directed connection using only local information to achieve maintenance of global connectivity. We also ensure the swarm is stable when the leader moves at a constant velocity. Validity and effectiveness of the proposed control strategy are shown by theoretical analysis, experiments with real robots, and numerical simulations.

Tài liệu tham khảo

Alligood, K. T., Sauer, T. D., & Yorke, J. A. (1996). Chaos: An introduction to dynamical systems. New York: Springer. Ardito, C. F., Paola, D. D., & Gasparro, A. (2012). Decentraized estimation of the minimum strongly connected subdigraph for robotic networks with limited field of view. In Proceedings of 51st IEEE CDC (pp. 5304–5309). Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41. Bullo, F., Cortes, J., & Martinez, S. (2009). Distributed control of robotic networks: A mathematical approach to motion coordination algorithms. Princeton: Princeton Univ Press. Cezayirli, A., & Kerestecioglu, F. (2013). Navigation of non-communicating autonomous mobile robots with guaranteed connectivity. Robotica, 31(5), 767–776. Dimarogonas, D. V., & Johansson, K. H. (2010). Bounded control of network connectivity in multi-agent systems. IET Control Theory and Applications, 4(8), 1330–1338. Durham, J. W., Franchi, A., & Bullo, F. (2012). Distributed pursuit-evasion without mapping or global localization via local frontiers. Autonomous Robots, 32, 81–95. Fang, H., Wei, Y., Chen, J., & Xin, B. (2017). Flocking of second-order multiagent systems with connectivity preservation based on algebraic connectivity estimation. IEEE Transactions on Cybernetics, 47(4), 1067–1077. Feng, Y., Xu, S., Lewis, F. L., & Zhang, B. (2015). Consensus of heterogeneous first- and second-order multi-agent systems with directed communication topologies. International Journal of Robust Nonlinear Control, 25(3), 362–375. Feng, Z., Sun, C., & Hu, G. (2017). Robust connectivity preserving rendezvous of multi-robot systems under unknown dynamics and disturbances. IEEE Transactions on Control of Network Systems, 4(4), 725–735. Gasparri, A., Priolo, A., & Ulivi, G. (2012) A swarm aggregation algorithm for multi-robot systems based on local interaction. In Proceedings of 2012 IEEE multi-conference on systems and control (pp. 1497–1502). Howard, A., Parker, L. E., & Sukhatme, G. S. (2006). Experiments with a large heterogeneous mobile robot team: Exploration mapping, deployment and detection. The International Journal of Robotics Research, 25, 431–447. Ji, M., & Egerstedt, M. (2007). Distributed coordination control of multiagent systems while preserving connectedness. IEEE Transactions on Automatic Control, 23(4), 693–703. Kawakami, H., & Namerikawa, T. (2009). Cooperative target-capturing strategy for multi-vehicle systems with dynamic network topology. In Proceedings of 2009 American control conference (pp. 635–640). Li, Y., & Muldowney, J. S. (1993). On Bendixson’s criterion. Journal of Differential Equations, 106, 27–39. Mei, J., Ren, W., & Chen, J. (2016). Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph. IEEE Transactions on Automactic Control, 61(8), 2019–2034. Miyata, N., Ota, J., Arai, T., & Asama, H. (2002). Cooperative transport by multiple mobile robots in unknown static environments associated with real-time task assignment. IEEE Transactions on Robotics Automation, 18(5), 769–780. Navarro, I., & Matia, F. (2013). A survey of collective movement of mobile robots. International Journal of Advanced Robotic Systems, 10(73), 1–9. Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51(3), 401–420. Ota, J. (2006). Multi-agent robot systems as distributed autonomous systems. Advanved Engineering Informatics, 20(1), 59–70. Panagou, D., Stipanovic, D. M., & Voulgaris, P. G. (2016). Distributed coordination control for multi-robot networks using Lyapunov-like barrier functions. IEEE Transactions on Automatic Control, 61(3), 617–632. Paola, D. D., Asmundis, R. D., Gasparri, A., & Rizzo, A. (2012). Decentralized topology control for robotic network with limited field of view sensors. In Proceedings of 2012 American Control Conference (pp. 3167–3172). Qu, Z., Li, C., & Lewis, F. (2014). Cooperative control with distributed gain adaptation and connectivity estimation for directed networks. International Journal of Robust Nonlinear Control, 24, 450–476. Ren, W., & Beard, R. W. (2005). Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 50(5), 655–661. Sabattini, L., Secchi, C., & Chopra, N. (2015). Decentralized estimation and control for preserving the strong connectivity of directed graphs. IEEE Transactions on Cybernetics, 45(10), 2273–2286. Schuresko, M., & Cortes, J. (2012). Distributed tree rearrangement for reachability and robust connectivity. SIAM Journal on Control and Optimization, 50(5), 2588–2620. Shi, G., Hong, Y., & Johansson, K. H. (2012). Connectivity and set tracking of multi-agent systems guided by multiple moving leaders. IEEE Transactions on Automatic Control, 57(3), 663–676. Sontag, E. D. (2003). A remark on the converging-input converging-state property. IEEE Transactions on Automatic Control, 48(2), 313–314. Verginis, C. K., Bechlioulis, C. P., Dimarogonas, D. V., & Kyriakopoulos, K. J. (2015). Decentralized 2-D control of vehicular platoons under limited visual feedback. In Proceedings of 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3566–3571). Zavlanos, M. M., Egerstedt, M. B., & Pappas, G. J. (2011). Graph-theoretic connectivity control of mobile robot networks. Proceedings of the IEEE, 99(9), 1525–1540. Zheng, Y., Zhu, Y., & Wang, L. (2011). Consensus of heterogeneous multi-agent systems. IET Control Theory and Applications, 5(16), 1881–1888.