Decay of radial solutions to a class of defocusing mass-sub-critical fractional Schrödinger equations

Springer Science and Business Media LLC - Tập 13 - Trang 1-17 - 2022
Tarek Saanouni1, Hayat Nafti2
1Department of Mathematics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah, Kingdom of Saudi Arabia
2Faculty of Sciences of Tunis, LR03ES04 Partial Differential Equations and Applications, University Tunis El Manar, Tunis, Tunisia

Tóm tắt

This note studies some asymptotic properties of global solutions to the non-linear fractional Schrödinger equation $$\begin{aligned} i\dot{u}-(-\Delta )^su=F(u),\quad 0

Tài liệu tham khảo

Boulenger, T., Himmelsbach, D., Lenzmann, E.: Blow-up for fractional NLS. J. Funct. Anal. 271, 2569–2603 (2016) Christ, M., Weinstein, M.: Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation. J. Funct. Anal. 100, 87–109 (1991) Cho, Y., Ozawa, T.: Sobolev inequalities with symmetry. Commun. Contemp. Math. 11, 355–365 (2009) Cho, Y., Ozawa, T., Xia, S.: Remarks on some dispersive estimates. Commun. Pure Appl. Anal. 10, 1121–1128 (2011) Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on \({{\mathbb{R}}}^3\). Commun. Pure Appl. Math. 57, 987–1014 (2004) Grafakos, L., Oh, S.: The Kato–Ponce inequality. Commun. Partial Differ. Equ. 39, 1128–1157 (2014) Guo, B., Huo, Z.: Global well-posedness for the fractional nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 36(2), 247–255 (2011) Guo, Z., Wang, Y.: Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. J. Anal. Math. 124(1), 1–38 (2014) Guo, Z., Sire, Y., Wang, Y., Zhao, L.: On the energy-critical fractional Schrödinger equation in the radial case. Dyn. PDE 15(4), 265–282 (2018) Hong, Y., Sire, Y.: On fractional Schrödinger equations in Sobolev spaces. Commun. Pure Appl. Anal. 14(6), 2265–2282 (2015) Kenig, C.E., Ponce, G.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527–620 (1993) Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A. 268, 298–304 (2000) Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E. 66, 056108 (2002) Lieb, E.: Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001) Mccormick, S.D., Robinson, J.C., Rodrigo, J.L.: Generalized Gagliardo–Nirenberg inequalities using weak Lebesgue spaces and BMO. Milan J. Math. 81(2), 265–289 (2013) Saanouni, T.: Decay of solutions to a \(2D\) Schrödinger equation with exponential growth. J. PDE 24(1), 37–54 (2011) Saanouni, T.: A note on the fractional Schödinger equation of Choquard type. J. Math. Anal. Appl. 470, 1004–1029 (2019) Saanouni, T.: Decay of solutions to a fourth-order nonlinear Schrödinger equation. Analysis 37(1), 47–54 (2017) Sun, C., Wang, H., Yao, X., Zheng, J.: Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete Contin Dyn. Syst. A 38(4), 2207–2228 (2018) Visciglia, N.: On the decay of solutions to a class of defocusing NLS. Math. Res. Lett. 16(5), 919–926 (2009)