Decavanadate Toxicology and Pharmacological Activities: V10 or V1, Both or None?

Manuel Aureliano1,2
1CCMar (Centre of Marine Sciences), University of Algarve, Campus of Gambelas, 8005-135 Faro
2Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-135 Faro

Tóm tắt

This review covers recent advances in the understanding of decavanadate toxicology and pharmacological applications. Toxicological in vivo studies point out that V10 induces several changes in several oxidative stress parameters, different from the ones observed for vanadate (V1). In in vitro studies with mitochondria, a particularly potent V10 effect, in comparison with V1, was observed in the mitochondrial depolarization (IC50 = 40 nM) and oxygen consumption (99 nM). It is suggested that mitochondrial membrane depolarization is a key event in decavanadate induction of necrotic cardiomyocytes death. Furthermore, only decavanadate species and not V1 potently inhibited myosin ATPase activity stimulated by actin (IC50 = 0.75 μM) whereas exhibiting lower inhibition activities for Ca2+‐ATPase activity (15 μM) and actin polymerization (17 μM). Because both calcium pump and actin decavanadate interactions lead to its stabilization, it is likely that V10 interacts at specific locations with these proteins that protect against hydrolysis but, on the other hand, it may induce V10 reduction to oxidovanadium(IV). Putting it all together, it is suggested that the pharmacological applications of V10 species and compounds whose mechanism of action is still to be clarified might involve besides V10 and V1 also vanadium(IV) species.

Từ khóa


Tài liệu tham khảo

10.4331/wjbc.v2.i10.215

10.1007/s10876-015-0881-y

10.1016/j.jinorgbio.2014.05.002

10.1016/j.ccr.2011.02.013

10.1016/j.carbpol.2014.10.066

10.1039/c4cp01665c

10.1016/j.ccr.2015.03.018

10.1016/j.foodchem.2015.05.003

10.1016/j.poly.2014.05.035

10.1007/s00244-003-2155-1

10.1016/S0021-9258(18)90689-7

10.1016/j.jinorgbio.2011.10.010

10.1016/j.jinorgbio.2006.06.007

10.1016/j.jinorgbio.2009.09.015

10.1016/j.jinorgbio.2014.10.004

10.1002/zaac.201300144

10.1038/30211

10.1016/0300-483X(86)90016-8

10.1016/s0003-9861(02)00408-3

10.1016/s0891-5849(03)00145-x

10.1002/kin.20887

10.1016/0891-5849(94)00159-H

Byczkowski J. Z., 1998, Vanadium in the Environment, Part 1: Chemistry and Biochemistry, 235

10.1177/0192623314548668

10.1016/0048-9697(93)90118-p

10.1007/bf00118191

10.1016/j.jinorgbio.2009.11.007

10.1016/j.aquatox.2007.03.005

10.1021/tx700204r

10.1007/s11010-006-0706-2

10.1016/s0304-4165(00)00026-x

10.1007/s11164-014-1573-1

10.1159/000030111

Etcheverry S. B., 1998, Vanadium in the Environment, Part 1: Chemistry and Biochemistry, 359

10.1152/ajpcell.00371.2003

10.1054/ceca.2001.0249

10.1016/0024-3205(94)00487-D

Braunwald E., 1994, Vanadate increases cytosolic free calcium in rat aortic smooth muscle cells, Cardioscience, 5, 139

10.1016/S0021-9258(19)69600-6

10.1016/S0021-9258(18)32968-5

10.1016/0167-4889(94)90249-6

10.1039/c2dt31688a

10.1074/jbc.m003218200

10.1123/ijsn.6.4.382

10.1021/bi00640a006

Gruzewska K., 2014, Essentiality and toxicity of vanadium supplements in health and pathology, Journal of Physiology and Pharmacology, 65, 603

10.1155/2015/245154

10.1073/pnas.76.6.2620

10.1021/bi049910

10.1039/b906255f

10.1177/0748233713501364

10.1081/clt-100102425

10.1016/j.jinorgbio.2011.09.009

10.1111/j.1747-0285.2007.00516.x

10.1021/cr960396q

10.1039/b504585a

10.1007/s11243-010-9369-7

10.1016/j.biopha.2008.01.006

10.1039/c2dt31784b