De Sitter Space Without Dynamical Quantum Fluctuations

Foundations of Physics - Tập 46 - Trang 702-735 - 2016
Kimberly K. Boddy1, Sean M. Carroll1, Jason Pollack1
1Physics Department, California Institute of Technology, Pasadena, USA

Tóm tắt

We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.

Tài liệu tham khảo

Bunch, T., Davies, P.: Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting. Proc. Roy. Soc. Lond. A360, 117 (1978) Bunch, T., Davies, P.: Nonconformal renormalized stress tensors in robertson-walker space-times. J. Phys. A 11, 1315 (1978) Hartle, J., Hawking, S.: Path integral derivation of black hole radiance. Phys. Rev. D 13, 2188 (1976) Gibbons, G., Hawking, S.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977) Banks, T.: Cosmological breaking of supersymmetry? or Little lambda goes back to the future 2. Int. J. Mod. Phys. A 16, 910 (2001). arXiv:hep-th/0007146 Banks, T., Fischler, W.: M theory observables for cosmological space-times. arXiv:hep-th/0102077 Lyth, D.H., Liddle, A.R.: The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure. Cambridge University Press, Revised edition (2009) Dodelson, S.: Modern Cosmology. Academic Press, San Diego, CA (2003) Baumann, D.: TASI lectures on inflation. arXiv:0907.5424 Vilenkin, A.: The birth of inflationary universes. Phys. Rev. D 27, 2848 (1983) Goncharov, A.S., Linde, A.D.: Global structure of the inflationary universe. Zh. Eksp. Teor. Fiz. 92, 1137 (1987) Goncharov, A., Linde, A.D., Mukhanov, V.F.: The global structure of the inflationary universe. Int. J. Mod. Phys. A 2, 561 (1987) Weinberg, S.: Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59, 2607 (1987) Bousso, R., Polchinski, J.: Quantization of four form fluxes and dynamical neutralization of the cosmological constant. JHEP 06, 006 (2000). arXiv:hep-th/0004134 Kachru, S., Kallosh, R., Linde, A.D., Trivedi, S.P.: De Sitter vacua in string theory. Phys. Rev. D 68, 046005 (2003). arXiv:hep-th/0301240 Susskind, L.: The anthropic landscape of string theory. In: The Davis Meeting on Cosmic Inflation (2003). arXiv:hep-th/0302219 Denef, F., Douglas, M.R.: Distributions of flux vacua. JHEP 05, 072 (2004). arXiv:hep-th/0404116 Lee, K.-M., Weinberg, E.J.: Decay of the true vacuum in curved space-time. Phys. Rev. D 36, 1088 (1987) Aguirre, A., Carroll, S.M., Johnson, M.C.: Out of equilibrium: understanding cosmological evolution to lower-entropy states. JCAP 02, 024 (2012). arXiv:1108.0417 Dyson, L., Kleban, M., Susskind, L.: Disturbing implications of a cosmological constant. JHEP 10, 011 (2002) Albrecht, A., Sorbo, L.: Can the universe afford inflation? Phys. Rev. D 70, 063528 (2004). arXiv:hep-th/0405270 Bousso, R., Freivogel, B.: A Paradox in the global description of the multiverse. JHEP 06, 018 (2007). arXiv:hep-th/0610132 Banks, T., Fischler, W., Paban, S.: Recurrent nightmares? Measurement theory in de Sitter space. JHEP 12, 062 (2002). arXiv:hep-th/0210160 Spradlin, M., Strominger, A., Volovich, A.: Les Houches lectures on de Sitter space. arXiv:hep-th/0110007 Wald, R.M.: Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant. Phys. Rev. D 28, 2118 (1983) Hollands, S.: Correlators, Feynman diagrams, and quantum no-hair in deSitter spacetime. Commun. Math. Phys. 319, 1 (2013). arXiv:1010.5367 Marolf, D., Morrison, I.A.: The IR stability of de Sitter QFT: results at all orders. Phys. Rev. D 84, 044040 (2011). arXiv:1010.5327 Stephens, C.R., ’t Hooft, G., Whiting, B.F.: Black hole evaporation without information loss. Class. Quant. Grav. 11, 621 (1994). arXiv:gr-qc/9310006 Susskind, L., Thorlacius, L., Uglum, J.: The Stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743 (1993). arXiv:hep-th/9306069 Parikh, M.K., Savonije, I., Verlinde, E.P.: Elliptic de Sitter space: dS/Z(2). Phys. Rev. D 67, 064005 (2003). arXiv:hep-th/0209120 Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454 (1957) Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2004). arXiv:quant-ph/0312059 Wallace, D.: The Emergent Multiverse. Oxford University Press, Oxford (2012) Elby, A., Bub, J.: Triorthogonal uniqueness theorem and its relevance to the interpretation of quantum mechanics. Phys. Rev. A 49, 4213 (1994) Zurek, W.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981) Zurek, W.H.: Preferred states, predictability, classicality and the environment-induced decoherence. Prog. Theor. Phys. 89, 281 (1993) Zurek, W.H.: Decoherence, Einselection, and the existential interpretation: The Rough guide. Phil. Trans. R. Soc. Lond. A356, 1793 (1998). arXiv:quant-ph/9805065 Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003). arXiv:quant-ph/0105127 Khlebnikov, S., Kruczenski, M.: Thermalization of isolated quantum systems. arXiv:1312.4612 Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27, 2885 (1983) Page, D.N.: The Lifetime of the universe. J. Korean Phys. Soc. 49, 711 (2006). arXiv:hep-th/0510003 [hep-th] Davenport, M., Olum, K.D.: Are there Boltzmann brains in the vacuum? arXiv:1008.0808 [hep-th] Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976) Marquardt, F., Püttmann, A.: Introduction to dissipation and decoherence in quantum systems. arXiv:0809.4403 Zurek, W.: Environment induced superselection rules. Phys. Rev. D 26, 1862 (1982) Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1984) Allen, B.: Vacuum states in de sitter space. Phys. Rev. D 32, 3136 (1985) Page, D.N., Wu, X.: Massless scalar field vacuum in de sitter spacetime. JCAP 11, 51 (2012). arXiv:1204.4462 Candelas, P., Raine, D.: General relativistic quantum field theory-an exactly soluble model. Phys. Rev. D 12, 965 (1975) Géhéniau, J., Schomblond, C.: Fonctions de green dans l’univers de de sitter. Acad. R. Belg. Bull. Cl. Sci. 54, 1147 (1968) Schomblond, C., Spindel, P.: Unicity conditions of the scalar field propagator delta(1) (x, y) in de Sitter Universe. Ann. Poincare Phys. Theor. 25, 67 (1976) Chernikov, N., Tagirov, E.: Quantum theory of scalar fields in de Sitter space-time. Annales Poincare Phys. Theor. A9, 109 (1968) Tagirov, E.: Consequences of field quantization in de Sitter type cosmological models. Ann. Phys. 76, 561 (1973) Mottola, E.: Particle creation in de Sitter space. Phys. Rev. D 31, 754 (1985) Bousso, R., Maloney, A., Strominger, A.: Conformal vacua and entropy in de sitter space. Phys. Rev. D 65, 104039 (2002) Anderson, P.R., Eaker, W., Habib, S., Molina-Paris, C., Mottola, E.: Attractor states and infrared scaling in de Sitter space. Phys. Rev. D 62, 124019 (2000). arXiv:gr-qc/0005102 Hollands, S.: Massless interacting quantum fields in de Sitter spacetime. Ann Henri Poincare 13, 1039 (2012). arXiv:1105.1996 [gr-qc] Garbrecht, B., Rigopoulos, G.: Self regulation of infrared correlations for massless scalar fields during inflation. Phys. Rev. D 84, 063516 (2011). arXiv:1105.0418 Garbrecht, B., Rigopoulos, G., Zhu, Y.: Infrared correlations in de sitter space: field theoretic vs. stochastic approach. Phys. Rev. D 89, 063506 (2014). arXiv:1310.0367 Nomura, Y.: Physical theories, eternal inflation, and quantum universe. JHEP 11, 063 (2011). arXiv:1104.2324 [hep-th] Nomura, Y.: Quantum mechanics, spacetime locality, and gravity. Found. Phys. 43, 978 (2013). arXiv:1110.4630 [hep-th] Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973) Hawking, S.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344 (1971) Goheer, N., Kleban, M., Susskind, L.: The Trouble with de Sitter space. JHEP 07, 056 (2003). arXiv:hep-th/0212209 [hep-th] Banks, T.: Some thoughts on the quantum theory of stable de Sitter space. arXiv:hep-th/0503066 Giddings, S.B., Marolf, D.: A global picture of quantum de Sitter space. Phys. Rev. D 76, 064023 (2007). arXiv:0705.1178 Coleman, S.R.: The fate of the false vacuum. 1. Semiclassical theory. Phys. Rev. D 15, 2929 (1977) Coleman, S.R., De Luccia, F.: Gravitational effects on and of vacuum decay. Phys. Rev. D 21, 3305 (1980) Susskind, L.: The census taker’s hat. arXiv:0710.1129 Sekino, Y., Susskind, L.: Census taking in the hat: FRW/CFT duality. Phys. Rev. D 80, 083531 (2009). arXiv:0908.3844 Bousso, R., Susskind, L.: The Multiverse Interpretation of Quantum Mechanics. Phys. Rev. D 85, 045007 (2012). arXiv:1105.3796 Page, D.N.: Is our universe likely to decay within 20 billion years? Phys. Rev. D 78, 063535 (2008). arXiv:hep-th/0610079 Page, D.N.: Susskind’s challenge to the Hartle-Hawking no-boundary proposal and possible resolutions. JCAP 1, 004 (2007). arXiv:hep-th/0610199 Page, D.N.: Return of the Boltzmann brains. Phys. Rev. D 78, 063536 (2008). arXiv:hep-th/0611158 Page, D.N.: Is our universe decaying at an astronomical rate? Phys. Lett. B 669, 197 (2008). arXiv:hep-th/0612137 Page, D.N.: Possible anthropic support for a decaying universe: a cosmic doomsday argument. arXiv:0907.4153 Gott III, J.R.: Boltzmann brains: I’d rather see than be one. arXiv:0802.0233 Aaronson, S.: The ghost in the quantum turing machine. arXiv:1306.0159 Carroll, S.M.: What if time really exists? arXiv:0811.3772 Boddy, K.K., Carroll, S.M.: Can the Higgs boson save us from the menace of the Boltzmann brains? arXiv:1308.4686 Garriga, J., Vilenkin, A.: Recycling universe. Phys. Rev. D 57, 2230 (1998). arXiv:astro-ph/9707292 Linde, A.D.: Sinks in the Landscape, Boltzmann Brains, and the Cosmological Constant Problem. JCAP 1, 022 (2007). arXiv:hep-th/0611043 Polarski, D., Starobinsky, A.A.: Semiclassicality and decoherence of cosmological perturbations. Class. Quant. Grav. 13, 377 (1996). arXiv:gr-qc/9504030 Lombardo, F.C., Nacir D.L.: Decoherence during inflation: the generation of classical inhomogeneities. Phys. Rev. D 72, 063506 (2005). arXiv:gr-qc/0506051 Martineau, P.: On the decoherence of primordial fluctuations during inflation. Class. Quant. Grav. 24, 5817 (2007). arXiv:astro-ph/0601134 Burgess, C.P., Holman, R., Hoover, D.: Decoherence of inflationary primordial fluctuations. Phys. Rev. D 77, 063534 (2008). arXiv:astro-ph/0601646 Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A.: Pointer states for primordial fluctuations in inflationary cosmology. Class. Quant. Grav. 24, 1699 (2007). arXiv:astro-ph/0610700 Prokopec, T., Rigopoulos, G.I.: Decoherence from Isocurvature perturbations in Inflation. JCAP 11, 029 (2007). arXiv:astro-ph/0612067 Creminelli, P., Dubovsky, S., Nicolis, A., Senatore, L., Zaldarriaga, M.: The phase transition to slow-roll eternal inflation. JHEP 09, 036 (2008). arXiv:0802.1067 Dubovsky, S., Senatore, L., Villadoro, G.: Universality of the volume bound in slow-roll eternal inflation. JHEP 05, 035 (2012). arXiv:1111.1725 Martinec, E.J., Moore, W.E.: Modeling quantum gravity effects in inflation. arXiv:1401.7681 BICEP2 Collaboration; Ade, P, et al.: BICEP2 I: Detection of b-mode polarization at degree angular scales. Phys. Rev. Lett. 112, 241101 (2014). arXiv:1403.3985 Bousso, R.: Proliferation of de Sitter space. Phys. Rev. D 58, 083511 (1998). arXiv:hep-th/9805081 Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I. Phys. Rev. 85, 166 (1952) Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. II. Phys. Rev. 85, 180 (1952) Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Bohmian mechanics and quantum field theory. Phys. Rev. Lett. 93, 090402 (2004) Struyve, W.: Pilot-wave theory and quantum fields. Rept. Prog. Phys. 73, 106001 (2010). arXiv:0707.3685 Goldstein, S., Struyve, W., Tumulka, R.: The Bohmian approach to the problems of cosmological quantum fluctuations. arXiv:1508.01017 Ghirardi, G., Rimini, A., Weber, T.: A model for a unified quantum description of macroscopic and microscopic systems. In: Quantum Probability and Applications II, pp. 223–232. Springer (1985) Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)