Database Analysis of Simulated and Recorded Electrophysiological Datasets with PANDORA’s Toolbox

Springer Science and Business Media LLC - Tập 7 - Trang 93-111 - 2009
Cengiz Günay1, Jeremy R. Edgerton1, Su Li2, Thomas Sangrey3, Astrid A. Prinz1, Dieter Jaeger1
1Dept. of Biology, Emory University, Atlanta, USA
2Neurosurgery Department, School of Medicine, Emory University, Atlanta, USA
3Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan

Tóm tắt

Neuronal recordings and computer simulations produce ever growing amounts of data, impeding conventional analysis methods from keeping pace. Such large datasets can be automatically analyzed by taking advantage of the well-established relational database paradigm. Raw electrophysiology data can be entered into a database by extracting its interesting characteristics (e.g., firing rate). Compared to storing the raw data directly, this database representation is several orders of magnitude higher efficient in storage space and processing time. Using two large electrophysiology recording and simulation datasets, we demonstrate that the database can be queried, transformed and analyzed. This process is relatively simple and easy to learn because it takes place entirely in Matlab, using our database analysis toolbox, PANDORA. It is capable of acquiring data from common recording and simulation platforms and exchanging data with external database engines and other analysis toolboxes, which make analysis simpler and highly interoperable. PANDORA is available to be freely used and modified because it is open-source ( http://software.incf.org/software/pandora/home ).

Tài liệu tham khảo

Achard, P., & Schutter, E. D. (2006). Complex parameter landscape for a complex neuron model. PLoS Computers in Biology, 2(7), e94. doi:10.1371/journal.pcbi.0020094. Baxter, S. M., Day, S. W., Fetrow, J. S., & Reisinger, S. J. (2006). Scientific software development is not an oxymoron. PLoS Computers in Biology, 2, 975–978. Bean, B. P. (2007). The action potential in mammalian central neurons. Nature Reviews. Neuroscience, 8(6), 451–465. doi:10.1038/nrn2148. Bjaalie, J. (2008). Understanding the brain through neuroinformatics. Front Neuroscience, 2(1), 19–21. doi:10.3389/neuro.01.022.2008. Bjaalie, J. G., & Grillner, S. (2007). Global neuroinformatics: The international neuroinformatics coordinating facility. Journal of Neuroscience, 27(14), 3613–3615. doi:10.1523/jneurosci.0558-07.2007. Bokil, H., Tchernichovski, O., & Mitra, P. P. (2006). Dynamic phenotypes: Time series analysis techniques for characterizing neuronal and behavioral dynamics. Neuroinformatics, 4(1), 119–128. Bower, J. M., & Beeman, D. (1998). The book of GENESIS (2nd ed.). New York: Springer. Brown, E. N., Kass, R. E., & Mitra, P. P. (2004). Multiple neural spike train data analysis: State-of-the-art and future challenges. Nature Neuroscience, 7(5), 456–461. Calin-Jageman, R. J., Tunstall, M. J., Mensh, B. D., Katz, P. S., & Frost, W. N. (2007). Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. Journal of Neurophysiology, 98(4), 2382–2398. doi:10.1152/jn.00572.2007. Cannon, R. C., Gewaltig, M. O., Gleeson, P., Bhalla, U. S., Cornelis, H., Hines, M. L., et al. (2007) Interoperability of neuroscience modeling software: Current status and future directions. Neuroinformatics, 5(2), 127–138. doi:10.1007/s12021-007-0004-5. Carnevale, N., & Hines, M. (2006). The NEURON book. Cambridge: Cambridge University Press. Chamberlin, D. D., & Boyce, R. F. (1974). SEQUEL: A structured English query language. In International conference on management of data, proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on data description, access and control (pp. 249–264). Ann Arbor, Michigan. Codd, E. (1970). A relational model of data for large shared data banks. Communications of the ACM, 13(6), 377–387. Cui, J., Xu, L., Bressler, S. L., Ding, M., & Liang, H. (2008). BSMART: A MATLAB/C toolbox for analysis of multichannel neural time series. Neural Networks, 21(8, Sp. Iss. SI), 1094–1104. doi:10.1016/j.neunet.2008.05.007. Eaton, J. W. (2002). GNU Octave. A numerical engineering software package. http://www.che.wisc.edu/octave. Elmasri, R., & Navathe, S. B. (1994). Fundamentals of database systems (2nd ed.). Reading: Addison-Wesley. Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In Genetic algorithms: Proceedings of the fifth international conference (pp. 416–423). San Francisco: Morgan Kaufmann. Gardner, D., Toga, A., Ascoli, G., Beatty, J., Brinkley, J., Dale, A., et al. (2003). Towards effective and rewarding data sharing. Neuroinformatics, 1(3), 289–295. Gardner, D., Akil, H., Ascoli, G. A., Bowden, D. M., Bug, W., Donohue, D. E., et al. (2008). The neuroscience information framework: A data and knowledge environment for neuroscience. Neuroinformatics, 6(3), 149–160. doi:10.1007/s12021-008-9024-z. Gleeson, P., Steuber, V., & Silver, R. A. (2007). neuroConstruct: A tool for modeling networks of neurons in 3D space. Neuron, 54(2), 219–235. doi:10.1016/j.neuron.2007.03.025. Günay, C. (2007). Plotting and analysis for neural database-oriented research applications (PANDORA) toolbox. http://userwww.service.emory.edu/~cgunay/pandora. Günay, C. (2008a). PANDORA neural analysis toolbox. In Intenational Neuroinformatics coordinating facility (INCF) software center. http://software.incf.org/software/44/view/PANDORA. Günay, C. (2008b). PANDORA neural analysis toolbox. SimToolDB. http://senselab.med.yale.edu/SimToolDB. Günay, C., Edgerton, J. R., & Jaeger, D. (2008a). Channel density distributions explain spiking variability in the globus pallidus: A combined physiology and computer simulation database approach. Journal of Neuroscience, 28(30), 7476–7491. doi:10.1523/jneurosci.4198-07.2008. Günay, C., Hooper, R. M., Hammett, K. R., & Prinz, A. A. (2008b). Calcium sensor properties for activity-dependent homeostatic regulation of pyloric network rhythms in the lobster stomatogastric ganglion. BMC Neuroscience, 9(Suppl 1), P42. Günay, C., Smolinski, T., Lytton, W., et al. (2008c). Computational intelligence in electrophysiology: Trends and open problems. In T. Smolinski, M. Milanova, & A. E. Hassanien (Eds.), Applications of computational intelligence in biology: Current trends and open problems (chap. XIV, pp. 325–359). New York: Springer. Herz, A. V., Meier, R., Nawrot, M. P., Schiegel, W., & Zito, T. (2008). G-Node: An integrated tool-sharing platform to support cellular and systems neurophysiology in the age of global neuroinformatics. Neural Networks, 21(8), 1070–1075. doi:10.1016/j.neunet.2008.05.011 (Special Issue on Neuroinformatics). Hines, M., Morse, T., Migliore, M., Carnevale, N., & Shepherd, G. (2004). ModelDB: A database to support computational neuroscience. Journal of Computational Neuroscience, 17(1), 7–11. http://senselab.med.yale.edu/ModelDB. Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544. Huys, Q. J. M., Ahrens, M. B., & Paninski, L. (2006). Efficient estimation of detailed single-neuron models. Journal of Neurophysiology, 96(2), 872–890. doi:10.1152/jn.00079.2006. Johnson, D. H., & Sinanović, S. (2001). Symmetrizing the Kullback-Leibler distance. Tech. Rep., Electrical & Computer Engineering Department, MS380 Rice University Houston, Texas 77005-1892. http://www-dsp.rice.edu/~dhj/resistor.pdf. Kullback, S., & Leibler, R. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86. Lidierth, M. (2009). sigTOOL: A MATLAB-based environment for sharing laboratory-developed software to analyze biological signals. Journal of Neuroscience Methods. doi:10.1016/j.jneumeth.2008.11.004. Liu, Z., Golowasch, J., Marder, E., & Abbott, L. F. (1998). A model neuron with activity-dependent conductances regulated by multiple calcium sensors. Journal of Neuroscience, 18(7), 309–320. Lytton, W. W. (2006). Neural query system—data-mining from within the neuron simulator. Neuroinformatics, 4(2), 163–175. Meier, R., Boven, K., Aertsen, A., & Egert, U. (2007). FIND—finding information in neural data, An open-source analysis toolbox for multiple-neuron recordings and network simulations. In Proc. 7th German Neurosci Meeting (p. 1212). Meier, R., Egert, U., Aertsen, A., & Nawrot, M. P. (2008). FIND—A unified framework for neural data analysis. Neural Networks, 21(8), 1085–1093. doi:10.1016/j.neunet.2008.06.019 (Special Issue on Neuroinformatics). Morse, T. (2007). Model sharing in computational neuroscience. Scholarpedia, 2(4), 3036. http://www.scholarpedia.org/article/Model_sharing_in_computational_neuroscience. Nicolelis, M., Dimitrov, D., Carmena, J., Crist, R., Lehew, G., Kralik, J., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11041–11046. Pittendrigh, S., & Jacobs G. (2003). Neurosys: A semistructured laboratory database. Neuroinformatics, 1(2), 167–176. Prinz, A. A., Billimoria, C. P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: Construction and analysis of databases of model neurons. Journal of Neurophysiology, 90, 3998–4015. Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1352. Sekerli, M., Del Negro, C., Lee, R., & Butera, R. (2004). Estimating action potential thresholds from neuronal time-series: New metrics and evaluation of methodologies. IEEE Transactions on Biomedical Engineering, 51(9), 1665–1672. doi:10.1109/TBME.2004.827531. Shepherd, G., Mirsky, J., Healy, M., et al. (1998). The human brain project: Neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data. TINS, 21(11). Sinanović, S., & Johnson, D. H. (2007). Toward a theory of information processing. Signal Processing, 87, 1326–1344. Smolinski, T. G., Prinz, A. A., & Zurada, J. M. (2008). Hybridization of rough sets and multi-objective evolutionary algorithms for classificatory signal decomposition. In A. E. Hassanien, Z. Suraj, D. Ślȩzak, & P. Lingras (Eds.), Rough computing: Theories, technologies, and applications (chap. X, pp. 204–227). Hershey: Information Science Reference. Taylor, A. L., Hickey, T. J., Prinz, A. A., & Marder, E. (2006). Structure and visualization of high-dimensional conductance spaces. Journal of Neurophysiology, 96, 891–905. Van Geit, W., Achard, P., & Schutter, E. D. (2007). Neurofitter: A parameter tuning package for a wide range of electrophysiological neuron models. Frontiers in Neuroinformatics, 1, 1. Van Geit, W., De Schutter, E., & Achard, P. (2008). Automated neuron model optimization techniques: A review. Biological Cybernetics, 99(4–5), 241–251. doi:10.1007/s00422-008-0257-6. Vanier, M. C., & Bower, J. M. (1999). A comparative survey of automated parameter-search methods for compartmental neural models. Journal of Computational Neuroscience, 7, 149–171. Weaver, C., & Wearne, S. (2006). The role of action potential shape and parameter constraints in optimization of compartment models. Neurocomputing, 69(10–12), 1053–1057. doi:10.1016/j.neucom.2005.12.044 (14th Annual Computational Neuroscience Meeting (CNS 05), Madison, WI, 17–21 July, 2005). Wood, R., Gurney, K., & Wilson, C. (2004). A novel parameter optimisation technique for compartmental models applied to a model of a striatal medium spiny neuron. Neurocomputing, 58, 1109–1116. doi:10.1016/j.neucom.2004.01.174.