Data re-uploading with a single qudit
Tóm tắt
Quantum two-level systems, i.e., qubits, form the basis for most quantum machine learning approaches that have been proposed throughout the years. However, higher dimensional quantum systems constitute a promising alternative and are increasingly explored in theory and practice. Here, we explore the capabilities of multi-level quantum systems, so-called qudits, for their use in a quantum machine learning context. We formulate classification and regression problems with the data re-uploading approach and demonstrate that a quantum circuit operating on a single qudit is able to successfully learn highly non-linear decision boundaries of classification problems such as the MNIST digit recognition problem. We demonstrate that the performance strongly depends on the relation between the qudit states representing the labels and the structure of labels in the training data set. Such a bias can lead to substantial performance improvement over qubit-based circuits in cases where the labels, the qudit states, and the operators employed to encode the data are well-aligned. Furthermore, we elucidate the influence of the choice of the elementary operators and show that a squeezing operator is necessary to achieve good performances. We also show that there exists a trade-off for qudit systems between the number of circuit-generating operators in each processing layer and the total number of layers needed to achieve a given accuracy. Finally, we compare classification results from numerically exact simulations and their equivalent implementation on actual IBM quantum hardware. The findings of our work support the notion that qudit-based algorithms exhibit attractive traits and constitute a promising route to increasing the computational capabilities of quantum machine learning approaches.
Tài liệu tham khảo
Barnett SM, Croke S (2009) Quantum state discrimination. Adv Opt Photon 1(2):238. https://doi.org/10.1364/AOP.1.000238
Bharti K, Cervera-Lierta A, Kyaw TH, et al. (2022) Noisy intermediate-scale quantum algorithms. Rev Mod Phys 94(1):015,004. https://doi.org/10.1103/RevModPhys.94.015004
Biamonte J, Wittek P, Pancotti N et al (2017) Quantum machine learning. Nat 549(7671):195–202. https://doi.org/10.1038/nature23474
Bradbury J, Frostig R, Hawkins P, et al. (2018) JAX: composable transformations of Python+NumPy programs. http://github.com/google/jax
Bravyi S, Kliesch A, Koenig R, et al. (2022) Hybrid quantum-classical algorithms for approximate graph coloring. Quantum 6:678. https://doi.org/10.22331/q-2022-03-30-678
Cozzolino D, Da Lio B, Bacco D, et al. (2019) High dimensional quantum communication: benefits, progress, and future challenges. Adv Quant Technol 2(12):1900,038. https://doi.org/10.1002/qute.201900038
Deller Y, Schmitt S, Lewenstein M, et al. (2023) Quantum approximate optimization algorithm for qudit systems. Phys Rev A 107(6):062,410. https://doi.org/10.1103/PhysRevA.107.062410
Dunjko V, Briegel HJ (2018) Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep Prog Phys 81(7):074,001. https://doi.org/10.1088/1361-6633/aab406
Dutta T, Pérez-Salinas A, Cheng JPS, et al. (2022) Single-qubit universal classifier implemented on an ion-trap quantum device. Phys Rev A 106(1):012,411. https://doi.org/10.1103/PhysRevA.106.012411
Egger DJ, Mareček J, Woerner S (2021) Warm-starting quantum optimization. Quantum 5:479. https://doi.org/10.22331/q-2021-06-17-479
Fedorov AK, Gisin N, Beloussov SM, et al. (2022) Quantum computing at the quantum advantage threshold: a down-to-business review. arXiv
Fischer LE, Chiesa A, Tacchino F, et al. (2022) Towards universal gate synthesis and error correction in transmon qudits. arXiv
Gasieniec LA, Bärtschi A, Eidenbenz S (2019) Deterministic preparation of Dicke states. In: Jansson J, Levcopoulos C (eds) Fundamentals of computation theory, vol 11651. Springer International Publishing, Cham, p 126–139, series Title: Lecture notes in computer science. https://doi.org/10.1007/978-3-030-25027-0_9
Giorda P, Zanardi P, Lloyd S (2003) Universal quantum control in irreducible state-space sectors: application to bosonic and spin-boson systems. Phys Rev A 68(6):062,320. https://doi.org/10.1103/PhysRevA.68.062320
Graham TM, Song Y, Scott J et al (2022) Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604(7906):457–462. https://doi.org/10.1038/s41586-022-04603-6
Grant E, Wossnig L, Ostaszewski M, et al. (2019) An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3:214. https://doi.org/10.22331/q-2019-12-09-214
Gyurik C, Dunjko V (2022) On establishing learning separations between classical and quantum machine learning with classical data. https://doi.org/10.48550/arXiv.2208.06339
Gyurik C, Cade C, Dunjko V (2022) Towards quantum advantage via topological data analysis. Quantum 6:855. https://doi.org/10.22331/q-2022-11-10-855
Husimi K (1940) Some formal properties of the density matrix. https://doi.org/10.11429/ppmsj1919.22.4_264
Jerbi S, Fiderer LJ, Poulsen Nautrup H et al (2023) Quantum machine learning beyond kernel methods. Nat. Commun. 14(1):517. https://doi.org/10.1038/s41467-023-36159-y
Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans Royal Soc A: Math Phys Eng Sci 374(2065):20150,202. https://doi.org/10.1098/rsta.2015.0202
Kasper V, González-Cuadra D, Hegde A, et al. (2022) Universal quantum computation and quantum error correction with ultracold atomic mixtures. Quantum Sci Technol 7(1):015,008. https://doi.org/10.1088/2058-9565/ac2d39
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. https://doi.org/10.48550/ARXIV.1412.6980
Kjaergaard M, Schwartz ME, Braumüller J et al (2020) Superconducting qubits: current state of play. Ann Rev Condens Matter Phys 11(1):369–395. https://doi.org/10.1146/annurev-conmatphys-031119-050605
Lavrijsen W, Tudor A, Muller J, et al. (2020) Classical optimizers for noisy intermediate-scale quantum devices. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, Denver, CO, USA, pp 267–277. https://doi.org/10.1109/QCE49297.2020.00041
LeCun Y, Cortes C (2005) MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/
Liu Y, Arunachalam S, Temme K (2021) A rigorous and robust quantum speed-up in supervised machine learning. Nat Phys 17(9):1013–1017. https://doi.org/10.1038/s41567-021-01287-z
Luo MX, Chen XB, Yang YX et al (2014) Geometry of quantum computation with qudits. Sci Rep 4(1):4044. https://doi.org/10.1038/srep04044
Montanaro A (2016) Quantum algorithms: an overview. npj Quantum Inf 2(1):15,023. https://doi.org/10.1038/npjqi.2015.23
Moussa C, van Rijn JN, Bäck T, et al. (2022) Hyperparameter importance of quantum neural networks across small datasets. In: Pascal P, Ienco D (eds) Discovery Science, vol 13601. Springer Nature Switzerland, Cham, p 32–46, series Title: Lecture notes in computer science. https://doi.org/10.1007/978-3-031-18840-4_3
Pedregosa F, Varoquaux G, Gramfort A, et al. (2018) Scikit-learn: machine learning in Python. https://doi.org/10.48550/arXiv.1201.0490
Pino JM, Dreiling JM, Figgatt C et al (2021) Demonstration of the trapped-ion quantum CCD computer architecture. Nat 592(7853):209–213. https://doi.org/10.1038/s41586-021-03318-4
Pérez-Salinas A, Cervera-Lierta A, Gil-Fuster E, et al. (2020) Data re-uploading for a universal quantum classifier. Quantum 4:226. https://doi.org/10.22331/q-2020-02-06-226
Resch S, Karpuzcu UR (2019) Quantum computing: an overview across the system stack. arXiv
Ringbauer M, Meth M, Postler L et al. (2022) A universal qudit quantum processor with trapped ions. Nat Phys 18(9):1053–1057. https://doi.org/10.1038/s41567-022-01658-0
Rudolph MS, Sim S, Raza A, et al. (2021) ORQVIZ: visualizing high-dimensional landscapes in variational quantum algorithms. https://doi.org/10.48550/ARXIV.2111.04695
Sack SH, Serbyn M (2021) Quantum annealing initialization of the quantum approximate optimization algorithm. Quantum 5:491. https://doi.org/10.22331/q-2021-07-01-491
Santra GC, Jendrzejewski F, Hauke P, et al. (2022) Squeezing and quantum approximate optimization. arXiv
Schuld M (2021) Supervised quantum machine learning models are kernel methods. https://doi.org/10.48550/arXiv.2101.11020
Schuld M, Killoran N (2022) Is quantum advantage the right goal for quantum machine learning? PRX Quantum 3(3):030,101. https://doi.org/10.1103/PRXQuantum.3.030101
Schuld M, Petruccione F (2018) Supervised learning with quantum computers. Quantum science and technology. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-96424-9
Schuld M, Sweke R, Meyer JJ (2021) Effect of data encoding on the expressive power of variational quantum-machine-learning models. Phys Rev A 103(3):032,430. https://doi.org/10.1103/PhysRevA.103.032430
Sheridan L, Scarani V (2010) Security proof for quantum key distribution using qudit systems. Phys Rev A 82(3):030,301. https://doi.org/10.1103/PhysRevA.82.030301
Sweke R, Seifert JP, Hangleiter D, et al. (2021) On the quantum versus classical learnability of discrete distributions. Quantum 5:417. https://doi.org/10.22331/q-2021-03-23-417
Treinish M, Gambetta J, Thomas S, et al. (2023) Qiskit/qiskit: Qiskit 0.41.0. https://doi.org/10.5281/ZENODO.2573505
Virtanen P, Gommers R, Oliphant TE, et al. (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17(3):261–272. https://doi.org/10.1038/s41592-019-0686-2
Wang Y, Hu Z, Sanders BC et al (2020) Qudits and high-dimensional quantum computing. Front Phys 8(589):504. https://doi.org/10.3389/fphy.2020.589504
Weggemans JR, Urech A, Rausch A, et al. (2022) Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach. Quantum 6:687. https://doi.org/10.22331/q-2022-04-13-687