Dark matter freeze-in with a heavy mediator: beyond the EFT approach

Evan Frangipane1, Stefania Gori1, Bibhushan Shakya2
1Santa Cruz Institute for Particle Physics, University of California Santa Cruz, 1156 High St., Santa Cruz, CA, 95064, USA
2Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

Tóm tắt

Abstract We study dark matter freeze-in scenarios where the mass of the mediator particle that couples dark matter to the Standard Model is larger than the reheat temperature, TRH, in the early Universe. In such setups, the standard approach is to work with an effective field theory (EFT) where the mediator is integrated out. We examine the validity of this approach in various generic s- and t-channel mediator frameworks. We find that the EFT approach breaks down when the mediator mass is between one to two orders of magnitude larger than TRH due to various effects such as s-channel resonance, a small thermally-suppressed abundance of the mediator, or decays of Standard Model particles through loops induced by the mediator. This highlights the necessity of including these contributions in such dark matter freeze-in studies. We also discuss the collider phenomenology of the heavy mediators, which is qualitatively different from standard freeze-in scenarios. We highlight that, due to the low TRH, the Standard Model-dark matter coupling in these scenarios can be relatively larger than in standard freeze-in scenarios, improving the testability prospects of these setups.

Từ khóa


Tài liệu tham khảo

J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [INSPIRE].

L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

R.T. Co, F. D’Eramo, L.J. Hall and D. Pappadopulo, Freeze-In Dark Matter with Displaced Signatures at Colliders, JCAP 12 (2015) 024 [arXiv:1506.07532] [INSPIRE].

F. D’Eramo, N. Fernandez and S. Profumo, Dark Matter Freeze-in Production in Fast-Expanding Universes, JCAP 02 (2018) 046 [arXiv:1712.07453] [INSPIRE].

G. Bélanger et al., LHC-friendly minimal freeze-in models, JHEP 02 (2019) 186 [arXiv:1811.05478] [INSPIRE].

M. Garny and J. Heisig, Interplay of super-WIMP and freeze-in production of dark matter, Phys. Rev. D 98 (2018) 095031 [arXiv:1809.10135] [INSPIRE].

J.M. No, P. Tunney and B. Zaldivar, Probing Dark Matter freeze-in with long-lived particle signatures: MATHUSLA, HL-LHC and FCC-hh, JHEP 03 (2020) 022 [arXiv:1908.11387] [INSPIRE].

L. Calibbi, F. D’Eramo, S. Junius, L. Lopez-Honorez and A. Mariotti, Displaced new physics at colliders and the early universe before its first second, JHEP 05 (2021) 234 [arXiv:2102.06221] [INSPIRE].

F. Elahi, C. Kolda and J. Unwin, UltraViolet Freeze-in, JHEP 03 (2015) 048 [arXiv:1410.6157] [INSPIRE].

B. Barman, D. Borah and R. Roshan, Effective Theory of Freeze-in Dark Matter, JCAP 11 (2020) 021 [arXiv:2007.08768] [INSPIRE].

M. Klasen and C.E. Yaguna, Warm and cold fermionic dark matter via freeze-in, JCAP 11 (2013) 039 [arXiv:1309.2777] [INSPIRE].

A. Merle, V. Niro and D. Schmidt, New Production Mechanism for keV Sterile Neutrino Dark Matter by Decays of Frozen-In Scalars, JCAP 03 (2014) 028 [arXiv:1306.3996] [INSPIRE].

S.B. Roland, B. Shakya and J.D. Wells, Neutrino Masses and Sterile Neutrino Dark Matter from the PeV Scale, Phys. Rev. D 92 (2015) 113009 [arXiv:1412.4791] [INSPIRE].

A. Merle and M. Totzauer, keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: Basic Concepts and Subtle Features, JCAP 06 (2015) 011 [arXiv:1502.01011] [INSPIRE].

S.B. Roland, B. Shakya and J.D. Wells, PeV neutrinos and a 3.5 keV x-ray line from a PeV-scale supersymmetric neutrino sector, Phys. Rev. D 92 (2015) 095018 [arXiv:1506.08195] [INSPIRE].

J. König, A. Merle and M. Totzauer, keV Sterile Neutrino Dark Matter from Singlet Scalar Decays: The Most General Case, JCAP 11 (2016) 038 [arXiv:1609.01289] [INSPIRE].

S.B. Roland and B. Shakya, Cosmological Imprints of Frozen-In Light Sterile Neutrinos, JCAP 05 (2017) 027 [arXiv:1609.06739] [INSPIRE].

L. Darmé, A. Hryczuk, D. Karamitros and L. Roszkowski, Forbidden frozen-in dark matter, JHEP 11 (2019) 159 [arXiv:1908.05685] [INSPIRE].

B. Barman, S. Bhattacharya and M. Zakeri, Non-Abelian Vector Boson as FIMP Dark Matter, JCAP 02 (2020) 029 [arXiv:1905.07236] [INSPIRE].

B. Barman, S. Bhattacharya and B. Grzadkowski, Feebly coupled vector boson dark matter in effective theory, JHEP 12 (2020) 162 [arXiv:2009.07438] [INSPIRE].

Y. Abe, T. Toma and K. Yoshioka, Non-thermal Production of PNGB Dark Matter and Inflation, JHEP 03 (2021) 130 [arXiv:2012.10286] [INSPIRE].

Y. Abe, Y. Hamada, T. Ohata, K. Suzuki and K. Yoshioka, TeV-scale Majorogenesis, JHEP 07 (2020) 105 [arXiv:2004.00599] [INSPIRE].

G. Bélanger, S. Khan, R. Padhan, M. Mitra and S. Shil, Right handed neutrinos, TeV scale BSM neutral Higgs boson, and FIMP dark matter in an EFT framework, Phys. Rev. D 104 (2021) 055047 [arXiv:2104.04373] [INSPIRE].

X. Chu, Y. Mambrini, J. Quevillon and B. Zaldivar, Thermal and non-thermal production of dark matter via Z’-portal(s), JCAP 01 (2014) 034 [arXiv:1306.4677] [INSPIRE].

J. Gehrlein and M. Pierre, A testable hidden-sector model for Dark Matter and neutrino masses, JHEP 02 (2020) 068 [arXiv:1912.06661] [INSPIRE].

G. Bhattacharyya, M. Dutra, Y. Mambrini and M. Pierre, Freezing-in dark matter through a heavy invisible Z’, Phys. Rev. D 98 (2018) 035038 [arXiv:1806.00016] [INSPIRE].

N. Bernal, M. Dutra, Y. Mambrini, K. Olive, M. Peloso and M. Pierre, Spin-2 Portal Dark Matter, Phys. Rev. D 97 (2018) 115020 [arXiv:1803.01866] [INSPIRE].

L. Covi, L. Roszkowski and M. Small, Effects of squark processes on the axino CDM abundance, JHEP 07 (2002) 023 [hep-ph/0206119] [INSPIRE].

M. Blennow, E. Fernandez-Martinez and B. Zaldivar, Freeze-in through portals, JCAP 01 (2014) 003 [arXiv:1309.7348] [INSPIRE].

Y. Mambrini, K.A. Olive, J. Quevillon and B. Zaldivar, Gauge Coupling Unification and Nonequilibrium Thermal Dark Matter, Phys. Rev. Lett. 110 (2013) 241306 [arXiv:1302.4438] [INSPIRE].

X. Chu, T. Hambye and M.H.G. Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].

B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

E.C.G. Stueckelberg, Interaction energy in electrodynamics and in the field theory of nuclear forces, Helv. Phys. Acta 11 (1938) 225 [INSPIRE].

G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].

G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0 : Freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].

XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

CMS collaboration, Search for a Narrow Resonance Lighter than 200 GeV Decaying to a Pair of Muons in Proton-Proton Collisions at $$ \sqrt{s} $$ = 13 TeV, Phys. Rev. Lett. 124 (2020) 131802 [arXiv:1912.04776] [INSPIRE].

ATLAS collaboration, Search for high-mass dilepton resonances using 139 fb−1 of pp collision data collected at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, Phys. Lett. B 796 (2019) 68 [arXiv:1903.06248] [INSPIRE].

CMS Collaboration collaboration, Search for a narrow resonance in high-mass dilepton final states in proton-proton collisions using 140 fb−1 of data at $$ \sqrt{s} $$ = 13 TeV, CMS-PAS-EXO-19-019, CERN, Geneva, Switzerland (2019).

H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

H.H. Patel, Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 218 (2017) 66 [arXiv:1612.00009] [INSPIRE].

ATLAS Collaboration collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, ATLAS-CONF-2020-052, CERN, Geneva, Switzerland (2020).

CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, Phys. Lett. B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].

M. Cepeda et al., Report from Working Group 2 : Higgs Physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 221 [arXiv:1902.00134] [INSPIRE].

J. de Blas et al., Higgs Boson Studies at Future Particle Colliders, JHEP 01 (2020) 139 [arXiv:1905.03764] [INSPIRE].

LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

CMS Collaboration collaboration, Search for a new scalar resonance decaying to a pair of Z bosons at the High-Luminosity LHC, CMS-PAS-FTR-18-040, CERN, Geneva, Switzerland (2019).

P. Barnes, Z. Johnson, A. Pierce and B. Shakya, Simple Hidden Sector Dark Matter, Phys. Rev. D 102 (2020) 075019 [arXiv:2003.13744] [INSPIRE].

ATLAS collaboration, Search for new phenomena in events with an energetic jet and missing transverse momentum in pp collisions at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, Phys. Rev. D 103 (2021) 112006 [arXiv:2102.10874] [INSPIRE].

CMS collaboration, Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at $$ \sqrt{s} $$ = 13 TeV, JHEP 07 (2017) 014 [arXiv:1703.01651] [INSPIRE].

A. Hook, E. Izaguirre and J.G. Wacker, Model Independent Bounds on Kinetic Mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].

D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating Dark Photons with High-Energy Colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].

Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

CMS collaboration, Search for an Lμ − Lτ gauge boson using Z→ 4μ events in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, Phys. Lett. B 792 (2019) 345 [arXiv:1808.03684] [INSPIRE].

M. Drees, M. Shi and Z. Zhang, Constraints on U(1)Lμ −Lτ from LHC Data, Phys. Lett. B 791 (2019) 130 [arXiv:1811.12446] [INSPIRE].

W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in Lμ − Lτ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].

W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams, Phys. Rev. Lett. 113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].

CCFR collaboration, Neutrino tridents and W Z interference, Phys. Rev. Lett. 66 (1991) 3117 [INSPIRE].

ATLAS collaboration, Search for a scalar partner of the top quark in the all-hadronic $$ t\overline{t} $$ plus missing transverse momentum final state at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020) 737 [arXiv:2004.14060] [INSPIRE].

ATLAS collaboration, Search for new phenomena with top quark pairs in final states with one lepton, jets, and missing transverse momentum in pp collisions at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector, JHEP 04 (2021) 174 [arXiv:2012.03799] [INSPIRE].

CMS collaboration, Search for direct top squark pair production in events with one lepton, jets, and missing transverse momentum at 13 TeV with the CMS experiment, JHEP 05 (2020) 032 [arXiv:1912.08887] [INSPIRE].

CMS collaboration, Search for top squark production in fully-hadronic final states in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, Phys. Rev. D 104 (2021) 052001 [arXiv:2103.01290] [INSPIRE].

ATLAS collaboration, Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in $$ \sqrt{s} $$ = 13 TeV pp collisions using the ATLAS detector, Eur. Phys. J. C 80 (2020) 123 [arXiv:1908.08215] [INSPIRE].

CMS collaboration, Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ = 13 TeV, JHEP 04 (2021) 123 [arXiv:2012.08600] [INSPIRE].

CRESST collaboration, First results from the CRESST-III low-mass dark matter program, Phys. Rev. D 100 (2019) 102002 [arXiv:1904.00498] [INSPIRE].

K. Bondarenko, A. Boyarsky, T. Bringmann, M. Hufnagel, K. Schmidt-Hoberg and A. Sokolenko, Direct detection and complementary constraints for sub-GeV dark matter, JHEP 03 (2020) 118 [arXiv:1909.08632] [INSPIRE].

LZ collaboration, LUX-ZEPLIN (LZ) Conceptual Design Report, arXiv:1509.02910 [INSPIRE].

M. Schumann, L. Baudis, L. Bütikofer, A. Kish and M. Selvi, Dark matter sensitivity of multi-ton liquid xenon detectors, JCAP 10 (2015) 016 [arXiv:1506.08309] [INSPIRE].

J. Herrero-Garcia, E. Molinaro and M.A. Schmidt, Dark matter direct detection of a fermionic singlet at one loop, Eur. Phys. J. C 78 (2018) 471 [Erratum ibid. 82 (2022) 53] [arXiv:1803.05660] [INSPIRE].

D.J.H. Chung, E.W. Kolb and A. Riotto, Production of massive particles during reheating, Phys. Rev. D 60 (1999) 063504 [hep-ph/9809453] [INSPIRE].

G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].

S.-L. Chen and Z. Kang, On UltraViolet Freeze-in Dark Matter during Reheating, JCAP 05 (2018) 036 [arXiv:1711.02556] [INSPIRE].

B. Shakya and J.D. Wells, Exotic Sterile Neutrinos and Pseudo-Goldstone Phenomenology, JHEP 02 (2019) 174 [arXiv:1801.02640] [INSPIRE].

B. Shakya, Sterile Neutrino Dark Matter from Freeze-In, Mod. Phys. Lett. A 31 (2016) 1630005 [arXiv:1512.02751] [INSPIRE].

B. Shakya and J.D. Wells, Sterile Neutrino Dark Matter with Supersymmetry, Phys. Rev. D 96 (2017) 031702 [arXiv:1611.01517] [INSPIRE].

H.H. Patel, S. Profumo and B. Shakya, Loop dominated signals from neutrino portal dark matter, Phys. Rev. D 101 (2020) 095001 [arXiv:1912.05581] [INSPIRE].

M. Nemevšek, F. Nesti and J.C. Vasquez, Majorana Higgses at colliders, JHEP 04 (2017) 114 [arXiv:1612.06840] [INSPIRE].

J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].

M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].