Dairy Propionibacteria: Versatile Probiotics

Microorganisms - Tập 5 Số 2 - Trang 24
Hassan Rabah1, Fillipe Luiz Rosa Do Carmo2, Gwénaël Jan1
1Science et Technologie du Lait et de l'Oeuf
2Instituto de Ciencias Biologicas [Minas Gerais]

Tóm tắt

Dairy propionibacteria are used as cheese ripening starters, as biopreservative and as beneficial additives, in the food industry. The main species, Propionibacterium freudenreichii, is known as GRAS (Generally Recognized As Safe, USA, FDA). In addition to another dairy species, Propionibacterium acidipropionici, they are included in QPS (Qualified Presumption of Safety) list. Additional to their well-known technological application, dairy propionibacteria increasingly attract attention for their promising probiotic properties. The purpose of this review is to summarize the probiotic characteristics of dairy propionibacteria reported by the updated literature. Indeed, they meet the selection criteria for probiotic bacteria, such as the ability to endure digestive stressing conditions and to adhere to intestinal epithelial cells. This is a prerequisite to bacterial persistence within the gut. The reported beneficial effects are ranked according to property’s type: microbiota modulation, immunomodulation, and cancer modulation. The proposed molecular mechanisms are discussed. Dairy propionibacteria are described as producers of nutraceuticals and beneficial metabolites that are responsible for their versatile probiotic attributes include short chain fatty acids (SCFAs), conjugated fatty acids, surface proteins, and 1,4-dihydroxy-2-naphtoic acid (DHNA). These metabolites possess beneficial properties and their production depends on the strain and on the growth medium. The choice of the fermented food matrix may thus determine the probiotic properties of the ingested product. This review approaches dairy propionibacteria, with an interest in both technological abilities and probiotic attributes.

Từ khóa


Tài liệu tham khảo

Fox, 2011, Propionibacterium spp., Encyclopedia of Dairy Sciences, Volume 1, 403

McDowell, A., Nagy, I., Magyari, M., Barnard, E., and Patrick, S. (2013). The Opportunistic Pathogen Propionibacterium acnes: Insights into Typing, Human Disease, Clonal Diversification and CAMP Factor Evolution. PLoS ONE, 8.

(2013). EFSA Panel on Biological Hazards (BIOHAZ) Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update): QPS 2013 update. EFSA J., 11, 3449.

Food and Agriculture Organization (2006). WHO Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation, FAO.

Cousin, 2010, Dairy propionibacteria as human probiotics: A review of recent evidence, Dairy Sci. Technol., 91, 1

Altieri, 2016, Dairy propionibacteria as probiotics: Recent evidences, World J. Microbiol. Biotechnol., 32, 172, 10.1007/s11274-016-2118-0

Richoux, 2015, Single-strain starter experimental cheese reveals anti-inflammatory effect of Propionibacterium freudenreichii CIRM BIA 129 in TNBS-colitis model, J. Funct. Foods, 18, 575, 10.1016/j.jff.2015.08.015

Cousin, 2012, Assessment of the Probiotic Potential of a Dairy Product Fermented by Propionibacterium freudenreichii in Piglets, J. Agric. Food Chem., 60, 7917, 10.1021/jf302245m

Cousin, 2012, The first dairy product exclusively fermented by Propionibacterium freudenreichii: A new vector to study probiotic potentialities in vivo, Food Microbiol., 32, 135, 10.1016/j.fm.2012.05.003

Cousin, 2016, The probiotic Propionibacterium freudenreichii as a new adjuvant for TRAIL-based therapy in colorectal cancer, Oncotarget, 7, 7161, 10.18632/oncotarget.6881

Okada, 2013, 1,4-Dihydroxy-2-naphthoic acid from Propionibacterium freudenreichii reduces inflammation in interleukin-10-deficient mice with colitis by suppressing macrophage-derived proinflammatory cytokines, J. Leukoc. Biol., 94, 473, 10.1189/jlb.0212104

Breton, 2016, Combining selected immunomodulatory Propionibacterium freudenreichii and Lactobacillus delbrueckii strains: Reverse engineering development of an anti-inflammatory cheese, Mol. Nutr. Food Res., 60, 935, 10.1002/mnfr.201500580

Okada, 2006, Propionibacterium freudenreichii component 1.4-dihydroxy-2-naphthoic acid (DHNA) attenuates dextran sodium sulphate induced colitis by modulation of bacterial flora and lymphocyte homing, Gut, 55, 681, 10.1136/gut.2005.070490

Falentin, H., Deutsch, S.-M., Jan, G., Loux, V., Thierry, A., Parayre, S., Maillard, M.-B., Dherbécourt, J., Cousin, F.J., and Jardin, J. (2010). The Complete Genome of Propionibacterium freudenreichii CIRM-BIA1T, a Hardy Actinobacterium with Food and Probiotic Applications. PLoS ONE, 5.

Parizzi, L.P., Grassi, M.C.B., Llerena, L.A., Carazzolle, M.F., Queiroz, V.L., Lunardi, I., Zeidler, A.F., Teixeira, P.J., Mieczkowski, P., and Rincones, J. (2012). The genome sequence of Propionibacterium acidipropionici provides insights into its biotechnological and industrial potential. BMC Genom., 13.

Amund, 2016, Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria, Can. J. Microbiol., 62, 715, 10.1139/cjm-2016-0186

Corcoran, 2008, Life under Stress: The Probiotic Stress Response and How it may be Manipulated, Curr. Pharm. Des., 14, 1382, 10.2174/138161208784480225

Huang, 2004, In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria, Int. J. Food Microbiol., 91, 253, 10.1016/j.ijfoodmicro.2003.07.001

Campaniello, 2015, Screening of Propionibacterium spp. for potential probiotic properties, Anaerobe, 34, 169, 10.1016/j.anaerobe.2015.06.003

Gagnaire, V., Jardin, J., Rabah, H., Briard-Bion, V., and Jan, G. (2015). Emmental Cheese Environment Enhances Propionibacterium freudenreichii Stress Tolerance. PLoS ONE, 10.

Martinovic, 2016, Survival of lactic acid and propionibacteria in low- and full-fat Dutch-type cheese during human digestion ex vivo, Lett. Appl. Microbiol., 62, 404, 10.1111/lam.12561

Huang, 2016, Hyperconcentrated Sweet Whey, a New Culture Medium That Enhances Propionibacterium freudenreichii Stress Tolerance, Appl. Environ. Microbiol., 82, 4641, 10.1128/AEM.00748-16

Ranadheera, 2014, Effect of dairy probiotic combinations on in vitro gastrointestinal tolerance, intestinal epithelial cell adhesion and cytokine secretion, J. Funct. Foods, 8, 18, 10.1016/j.jff.2014.02.022

Ranadheera, 2012, In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt, In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt, Food Res. Int., 49, 619, 10.1016/j.foodres.2012.09.007

Anastasiou, 2006, Changes in protein synthesis during thermal adaptation of Propionibacterium freudenreichii subsp. shermanii, Int. J. Food Microbiol., 108, 301

Jan, 2001, Changes in Protein Synthesis and Morphology during Acid Adaptation of Propionibacterium freudenreichii, Appl. Environ. Microbiol., 67, 2029, 10.1128/AEM.67.5.2029-2036.2001

Leverrier, 2003, Susceptibility and Adaptive Response to Bile Salts in Propionibacterium freudenreichii: Physiological and Proteomic Analysis, Appl. Environ. Microbiol., 69, 3809, 10.1128/AEM.69.7.3809-3818.2003

Leverrier, 2004, Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii, Arch. Microbiol., 181, 215, 10.1007/s00203-003-0646-0

Guan, 2014, Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics, Sci. Rep., 4, 6951, 10.1038/srep06951

Guan, 2013, Systems-level understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: Mechanism and application, J. Biotechnol., 167, 56, 10.1016/j.jbiotec.2013.06.008

Cardoso, 2004, Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions, Int. J. Food Microbiol., 91, 195, 10.1016/S0168-1605(03)00387-8

Lan, 2007, Survival and metabolic activity of selected strains of Propionibacterium freudenreichii in the gastrointestinal tract of human microbiota-associated rats, Br. J. Nutr., 97, 714, 10.1017/S0007114507433001

Babot, 2013, Physiological and functional characteristics of Propionibacterium strains of the poultry microbiota and relevance for the development of probiotic products, Anaerobe, 23, 27, 10.1016/j.anaerobe.2013.08.001

Fondrevez, 2007, Transcarboxylase mRNA: A marker which evidences P. freudenreichii survival and metabolic activity during its transit in the human gut, Int. J. Food Microbiol., 113, 303, 10.1016/j.ijfoodmicro.2006.08.013

Saraoui, T., Parayre, S., Guernec, G., Loux, V., Montfort, J., Le Cam, A., Boudry, G., Jan, G., and Falentin, H. (2013). A unique in vivo experimental approach reveals metabolic adaptation of the probiotic Propionibacterium freudenreichii to the colon environment. BMC Genom., 14.

Palacios, 2016, Inhibition of enteropathogens adhesion to human enterocyte-like HT-29 cells by a dairy strain of Propionibacterium acidipropionici, Benef. Microbes, 7, 431, 10.3920/BM2015.0144

2002, Some factors affecting the adherence of probiotic Propionibacterium acidipropionici CRL 1198 to intestinal epithelial cells, Can. J. Microbiol., 48, 449, 10.1139/w02-036

Ouwehand, 2000, Adhesion of inactivated probiotic strains to intestinal mucus, Lett. Appl. Microbiol., 31, 82, 10.1046/j.1472-765x.2000.00773.x

Tuomola, 1999, Human ileostomy glycoproteins as a model for small intestinal mucus to investigate adhesion of probiotics, Lett. Appl. Microbiol., 28, 159, 10.1046/j.1365-2672.1999.00518.x

Ganan, 2013, Interaction of Campylobacter spp. and Human Probiotics in Chicken Intestinal Mucus: Adhesion of Campylobacter and Interaction with Probiotics, Zoonoses Public Health, 60, 141, 10.1111/j.1863-2378.2012.01510.x

Darilmaz, 2012, Aggregation and Hydrophobicity Properties of 6 Dairy Propionibacteria Strains Isolated from Homemade Turkish Cheeses, J. Food Sci., 77, M20, 10.1111/j.1750-3841.2011.02438.x

Vesterlund, 2006, Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria, Microbiology, 152, 1819, 10.1099/mic.0.28522-0

Hajfarajollah, 2014, Newly Antibacterial and Antiadhesive Lipopeptide Biosurfactant Secreted by a Probiotic Strain, Propionibacterium freudenreichii, Appl. Biochem. Biotechnol., 174, 2725, 10.1007/s12010-014-1221-7

Nair, D.V.T., and Kollanoor-Johny, A. (2016). Effect of Propionibacterium freudenreichii on Salmonella multiplication, motility, and association with avian epithelial cells. Poult. Sci.

Peton, 2015, Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties, J. Proteom., 113, 447, 10.1016/j.jprot.2014.07.018

Falentin, 2016, Permanent draft genome sequence of the probiotic strain Propionibacterium freudenreichii CIRM-BIA 129 (ITG P20), Stand. Genom. Sci., 11, 6, 10.1186/s40793-015-0120-z

Hudson, 2017, Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies, Clin. Microbiol. Rev., 30, 191, 10.1128/CMR.00049-16

Fukumoto, 2014, Identification of a probiotic bacteria-derived activator of the aryl hydrocarbon receptor that inhibits colitis, Immunol. Cell Biol., 92, 460, 10.1038/icb.2014.2

Mitsuyama, 2007, Treatment of Ulcerative Colitis with Milk Whey Culture with Propionibacterium freudenreichii, J. Intest. Microbiol., 21, 143

Hojo, 2002, Effect of Ingested Culture of Propionibacterium freudenreichii ET-3 on Fecal Microflora and Stool Frequency in Healthy Females, Biosci. Microflora, 21, 115, 10.12938/bifidus1996.21.115

Seki, 2004, Effects of Fermented Milk Whey Containing Novel Bifidogenic Growth Stimulator Produced by Propionibacterium on Fecal Bacteria, Putrefactive Metabolite, Defecation Frequency and Fecal Properties in Senile Volunteers Needed Serious Nursing-Care Taking Enteral Nutrition by Tube Feeding, J. Intest. Microbiol., 18, 107

Babot, 2016, Feed supplementation with avian Propionibacterium acidipropionici contributes to mucosa development in early stages of rearing broiler chickens, Benef. Microbes, 7, 687, 10.3920/BM2016.0077

O’Callaghan, A., and van Sinderen, D. (2016). Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol., 7.

Wexler, 2007, Bacteroides: The Good, the Bad, and the Nitty-Gritty, Clin. Microbiol. Rev., 20, 593, 10.1128/CMR.00008-07

Isawa, 2002, Isolation and Identification of a New Bifidogenic Growth Stimulator Produced by Propionibacterium freudenreichii ET-3, Biosci. Biotechnol. Biochem., 66, 679, 10.1271/bbb.66.679

Furuichi, 2006, Aerobic culture of Propionibacterium freudenreichii ET-3 can increase production ratio of 1,4-dihydroxy-2-naphthoic acid to menaquinone, J. Biosci. Bioeng., 101, 464, 10.1263/jbb.101.464

Kaneko, 1999, A Novel Bifidogenic Growth Stimulator Produced by Propionibacterium freudenreichii, Biosci. Microflora, 18, 73, 10.12938/bifidus1996.18.73

Yamazaki, 1999, Role of 2-amino-3-carboxy-1,4-naphthoquinone, a strong growth stimulator for bifidobacteria, as an electron transfer mediator for NAD(P)+ regeneration in Bifidobacterium longum, Biochim. Biophys. Acta BBA Gen. Subj., 1428, 241, 10.1016/S0304-4165(99)00098-7

Kaneko, 1994, Growth Stimulator for Bifidobacteria Produced by Propionibacterium freudenreichii and Several Intestinal Bacteria, J. Dairy Sci., 77, 393, 10.3168/jds.S0022-0302(94)76965-4

Uchida, 2011, Safety of high doses of Propionibacterium freudenreichii ET-3 culture in healthy adult subjects, Regul. Toxicol. Pharmacol., 60, 262, 10.1016/j.yrtph.2010.12.005

Gultemirian, 2010, Propionibacterium acidipropionici CRL1198 influences the production of acids and the growth of bacterial genera stimulated by inulin in a murine model of cecal slurries, Anaerobe, 16, 345, 10.1016/j.anaerobe.2010.04.006

Luo, 2016, Potential influence of dairy propionibacteria on the growth and acid metabolism of Streptococcus bovis and Megasphaera elsdenii, Benef. Microbes, 8, 111, 10.3920/BM2016.0044

Delgado, 2017, Probiotics, gut microbiota, and their influence on host health and disease, Mol. Nutr. Food Res., 61, 1600240, 10.1002/mnfr.201600240

Wasilewski, 2015, Beneficial Effects of Probiotics, Prebiotics, Synbiotics, and Psychobiotics in Inflammatory Bowel Disease, Inflamm. Bowel Dis., 21, 1674, 10.1097/MIB.0000000000000364

DuPont, 2014, Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease, Clin. Exp. Gastroenterol., 7, 473, 10.2147/CEG.S27530

Breton, 2013, Tracking the microbiome functionality: Focus on Propionibacterium species, Gut, 62, 1227, 10.1136/gutjnl-2012-304393

Foligne, 2010, Promising Immunomodulatory Effects of Selected Strains of Dairy Propionibacteria as Evidenced In Vitro and In Vivo, Appl. Environ. Microbiol., 76, 8259, 10.1128/AEM.01976-10

Oksaharju, 2013, Effects of probiotic Lactobacillus rhamnosus GG and Propionibacterium freudenreichii ssp. shermanii JS supplementation on intestinal and systemic markers of inflammation in ApoE*3Leiden mice consuming a high-fat diet, Br. J. Nutr., 110, 77, 10.1017/S0007114512004801

Kajander, 2008, Clinical trial: Multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota, Aliment. Pharmacol. Ther., 27, 48, 10.1111/j.1365-2036.2007.03542.x

Suzuki, 2006, Bifidogenic growth stimulator for the treatment of active ulcerative colitis: A pilot study, Nutrition, 22, 76, 10.1016/j.nut.2005.04.013

Lortal, 1993, Paracrystalline surface layers of dairy propionibacteria, Appl. Environ. Microbiol., 59, 2369, 10.1128/aem.59.8.2369-2374.1993

Fagan, 2014, Biogenesis and functions of bacterial S-layers, Nat. Rev. Microbiol., 12, 211, 10.1038/nrmicro3213

Ilk, 2011, S-layer fusion proteins—Construction principles and applications, Curr. Opin. Biotechnol., 22, 824, 10.1016/j.copbio.2011.05.510

Deutsch, 2017, Identification of proteins involved in the anti-inflammatory properties of Propionibacterium freudenreichii by means of a multi-strain study, Sci. Rep., 7, 46409, 10.1038/srep46409

Deutsch, 2012, Contribution of Surface—Glucan Polysaccharide to Physicochemical and Immunomodulatory Properties of Propionibacterium freudenreichii, Appl. Environ. Microbiol., 78, 1765, 10.1128/AEM.07027-11

Deutsch, 2010, Correlation of the Capsular Phenotype in Propionibacterium freudenreichii with the Level of Expression of gtf, a Unique Polysaccharide Synthase-Encoding Gene, Appl. Environ. Microbiol., 76, 2740, 10.1128/AEM.02591-09

Lightfoot, 2015, SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis, EMBO J., 34, 881, 10.15252/embj.201490296

Konstantinov, 2008, S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions, Proc. Natl. Acad. Sci. USA, 105, 19474, 10.1073/pnas.0810305105

Puertollano, 2014, Biological significance of short-chain fatty acid metabolism by the intestinal microbiome, Curr. Opin. Clin. Nutr. Metab. Care, 17, 139, 10.1097/MCO.0000000000000025

Alt, 2014, Chapter Three—The Role of Short-Chain Fatty Acids in Health and Disease, Advances in Immunology, Volume 121, 91, 10.1016/B978-0-12-800100-4.00003-9

Kim, 2014, Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation, Immune Netw., 14, 277, 10.4110/in.2014.14.6.277

Zimmerman, 2012, Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells, AJP Gastrointest. Liver Physiol., 302, G1405, 10.1152/ajpgi.00543.2011

McIntosh, 2009, Mechanism of conjugated linoleic acid and vaccenic acid formation in human faecal suspensions and pure cultures of intestinal bacteria, Microbiology, 155, 285, 10.1099/mic.0.022921-0

Jiang, 1998, Production of conjugated linoleic acid by dairy starter cultures, J. Appl. Microbiol., 85, 95, 10.1046/j.1365-2672.1998.00481.x

Xu, 2005, Conjugated Linoleic Acid Content and Organoleptic Attributes of Fermented Milk Products Produced with Probiotic Bacteria, J. Agric. Food Chem., 53, 9064, 10.1021/jf051030u

Hennessy, 2012, The Production of Conjugated α-Linolenic, γ-Linolenic and Stearidonic Acids by Strains of Bifidobacteria and Propionibacteria, Lipids, 47, 313, 10.1007/s11745-011-3636-z

Gorissen, 2015, Bacterial Production of Conjugated Linoleic and Linolenic Acid in Foods: A Technological Challenge, Crit. Rev. Food Sci. Nutr., 55, 1561, 10.1080/10408398.2012.706243

Rainio, 2001, Reduction of linoleic acid inhibition in production of conjugated linoleic acid by Propionibacterium freudenreichii ssp. shermanii, Can. J. Microbiol., 47, 735, 10.1139/w01-073

Fontes, 2017, Evidences and perspectives in the utilization of CLNA isomers as bioactive compound in foods, Crit. Rev. Food Sci. Nutr., 57, 2611, 10.1080/10408398.2015.1063478

Yuan, 2014, Conjugated linolenic acids and their bioactivities: A review, Food Funct., 5, 1360, 10.1039/c4fo00037d

Yuan, 2015, Modulation of Peroxisome Proliferator-Activated Receptor gamma (PPAR γ) by Conjugated Fatty Acid in Obesity and Inflammatory Bowel Disease, J. Agric. Food Chem., 63, 1883, 10.1021/jf505050c

Kim, 2016, Conjugated Linoleic Acid: Potential Health Benefits as a Functional Food Ingredient, Annu. Rev. Food Sci. Technol., 7, 221, 10.1146/annurev-food-041715-033028

Churruca, 2009, Conjugated linoleic acid isomers: Differences in metabolism and biological effects, BioFactors, 35, 105, 10.1002/biof.13

Draper, 2014, Conjugated linoleic acid suppresses dendritic cell activation and subsequent Th17 responses, J. Nutr. Biochem., 25, 741, 10.1016/j.jnutbio.2014.03.004

Hennessy, 2016, Sources and Bioactive Properties of Conjugated Dietary Fatty Acids, Lipids, 51, 377, 10.1007/s11745-016-4135-z

Viladomiu, 2016, Modulation of inflammation and immunity by dietary conjugated linoleic acid, Eur. J. Pharmacol., 785, 87, 10.1016/j.ejphar.2015.03.095

Bultman, 2017, Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer, Mol. Nutr. Food Res., 61, 1500902, 10.1002/mnfr.201500902

2016, Diet, microorganisms and their metabolites, and colon cancer, Nat. Rev. Gastroenterol. Hepatol., 13, 691, 10.1038/nrgastro.2016.165

Jan, 2002, Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria, Cell Death Differ., 9, 179, 10.1038/sj.cdd.4400935

Lan, 2007, Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria, Apoptosis, 12, 573, 10.1007/s10495-006-0010-3

Cousin, F.J., Jouan-Lanhouet, S., Dimanche-Boitrel, M.-T., Corcos, L., and Jan, G. (2012). Milk Fermented by Propionibacterium freudenreichii Induces Apoptosis of HGT-1 Human Gastric Cancer Cells. PLoS ONE, 7.

Lan, 2008, Increased induction of apoptosis by Propionibacterium freudenreichii TL133 in colonic mucosal crypts of human microbiota-associated rats treated with 1,2-dimethylhydrazine, Br. J. Nutr., 100, 1251, 10.1017/S0007114508978284

Zarate, 2009, Dairy bacteria remove in vitro dietary lectins with toxic effects on colonic cells, J. Appl. Microbiol., 106, 1050, 10.1111/j.1365-2672.2008.04077.x

Halttunen, 2007, Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution: Toxin removal with LAB combination, Lett. Appl. Microbiol., 46, 160, 10.1111/j.1472-765X.2007.02276.x

Lee, 2003, Kinetics of adsorption and desorption of aflatoxin B1 by viable and nonviable bacteria, J. Food Prot., 66, 426, 10.4315/0362-028X-66.3.426

Gratz, 2005, Aflatoxin B1 binding by a mixture of Lactobacillus and Propionibacterium: In vitro versus ex vivo, J. Food Prot., 68, 2470, 10.4315/0362-028X-68.11.2470

Gratz, 2004, Intestinal Mucus Alters the Ability of Probiotic Bacteria To Bind Aflatoxin B1 In Vitro, Appl. Environ. Microbiol., 70, 6306, 10.1128/AEM.70.10.6306-6308.2004

Salminen, 2000, Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B, from the chicken duodenum, J. Food Prot., 63, 549, 10.4315/0362-028X-63.4.549

Polychronaki, 2006, Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China, Am. J. Clin. Nutr., 83, 1199, 10.1093/ajcn/83.5.1199

Kekkonen, 2011, A Probiotic Mixture Including Galactooligosaccharides Decreases Fecal-Glucosidase Activity but Does Not Affect Serum Enterolactone Concentration in Men during a Two-Week Intervention, J. Nutr., 141, 870, 10.3945/jn.110.137703

Hatakka, 2008, The influence of Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp. shermanii JS on potentially carcinogenic bacterial activity in human colon, Int. J. Food Microbiol., 128, 406, 10.1016/j.ijfoodmicro.2008.09.010

Saxelin, 2010, Persistence of probiotic strains in the gastrointestinal tract when administered as capsules, yoghurt, or cheese, Int. J. Food Microbiol., 144, 293, 10.1016/j.ijfoodmicro.2010.10.009

Thierry, 2011, New insights into physiology and metabolism of Propionibacterium freudenreichii, Int. J. Food Microbiol., 149, 19, 10.1016/j.ijfoodmicro.2011.04.026

Zárate, G. (2012). Dairy Propionibacteria: Less Conventional Probiotics to Improve the Human and Animal Health. Probiotic in Animals, InTechOpen.

Yee, 2014, Great interspecies and intraspecies diversity of dairy propionibacteria in the production of cheese aroma compounds, Int. J. Food Microbiol., 191, 60, 10.1016/j.ijfoodmicro.2014.09.001

Piao, 2004, Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii, J. Biosci. Bioeng., 98, 167, 10.1016/S1389-1723(04)00261-0

Wang, 2015, Improved propionic acid and 5,6-dimethylbenzimidazole control strategy for vitamin B12 fermentation by Propionibacterium freudenreichii, J. Biotechnol., 193, 123, 10.1016/j.jbiotec.2014.11.019