Daily spatiotemporal precipitation simulation using latent and transformed Gaussian processes

Water Resources Research - Tập 48 Số 1 - 2012
William Kleiber1, Richard W. Katz1, Balaji Rajagopalan2,3
1Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, Boulder, Colorado, USA.
2Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado, USA
3Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, Colorado, USA

Tóm tắt

A daily stochastic spatiotemporal precipitation generator that yields spatially consistent gridded quantitative precipitation realizations is described. The methodology relies on a latent Gaussian process to drive precipitation occurrence and a probability integral transformed Gaussian process for intensity. At individual locations, the model reduces to a Markov chain for precipitation occurrence and a gamma distribution for precipitation intensity, allowing statistical parameters to be included in a generalized linear model framework. Statistical parameters are modeled as spatial Gaussian processes, which allows for interpolation to locations where there are no direct observations via kriging. One advantage of such a model for the statistical parameters is that stochastic generator parameters are immediately available at any location, with the ability to adapt to spatially varying precipitation characteristics. A second advantage is that parameter uncertainty, generally unavailable with deterministic interpolators, can be immediately quantified at all locations. The methodology is illustrated on two data sets, the first in Iowa and the second over the Pampas region of Argentina. In both examples, the method is able to capture the local and domain aggregated precipitation behavior fairly well at a wide range of time scales, including daily, monthly, and annually.

Từ khóa


Tài liệu tham khảo

10.1111/j.1467-9876.2008.00654.x

10.1111/1467-9876.00419

10.1093/biomet/asp078

10.1029/2006WR005714

10.1175/2010JCLI3537.1

10.1002/joc.1435

10.5194/hess‐13‐2299‐2009

10.1175/MWR3341.1

10.1214/08-AOAS203

10.1016/j.jhydrol.2007.06.035

10.1029/2001WR000291

10.1214/08-AOAS159

10.1016/j.envsoft.2008.04.003

10.1175/2008JHM960.1

10.1029/1999JD900119

10.1002/9780470316993

10.1002/9781119115151

10.1016/S0168-1923(01)00268-4

10.1002/joc.1893

10.3354/cr034129

10.1029/2008WR007316

10.1007/BF02595775

10.1198/jasa.2010.tm09420

10.1016/S0022-1694(00)00144-X

10.1007/BF00209669

10.1175/JHM448.1

Hay L., 1998, Precipitation interpolation in mountainous regions using multiple linear regression, IAHS Publ., 248, 33

10.1111/1467-9876.00136

10.1175/1520-0450(2000)039<0778:SVAIOS>2.0.CO;2

10.1175/1520-0450(1977)016<0671:PAACDP>2.0.CO;2

10.1007/BF00142464

10.1175/1520-0442(1999)012<2528:MMFOOP>2.0.CO;2

10.1016/j.envsoft.2007.02.005

10.1016/0022-1694(85)90181-7

10.1175/2010MWR3511.1

Kleiber W., 2012, Geostatistical model averaging for locally calibrated probabilistic quantitative precipitation forecasting, J. Am. Stat. Assoc.

10.1016/j.jhydrol.2004.04.022

10.1029/2004WR003782

10.1007/s13143-010-0031-2

10.1029/2008WR007485

10.1029/2009RG000314

10.1007/978-1-4899-3242-6

10.1029/2009WR008423

10.1016/j.jhydrol.2006.05.016

Menne M. J. C. N.WilliamsJr. andR. S.Vose(2010) United States Historical Climatology Network (USHCN) Version 2 Serial Monthly Dataset Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab. Oak Ridge Tenn.[available at http://cdiac.ornl.gov/epubs/ndp/ushcn/daily_doc.html].

10.2307/3318671

10.1007/s004770000043

10.1002/env.785

10.1175/1520-0450-39.5.610

10.1002/joc.808

10.1029/1999WR900028

10.1029/WR017i001p00182

10.1098/rspa.1988.0061

Sansó B., 2000, A nonstationary multisite model for rainfall, J. Am. Stat. Assoc., 95, 1089

10.1214/aos/1176344136

10.1016/j.jhydrol.2009.03.025

10.1007/978-1-4612-1494-6

10.2307/2981736

10.1016/j.jhydrol.2007.03.020

10.1016/S0022-1694(96)03128-9

10.1029/WR021i008p01259

10.1016/S0022-1694(98)00186-3

10.1016/j.agrformet.2007.09.005

10.1029/2009WR007902

10.1002/wcc.85

10.1177/030913339902300302

10.1175/1520-0450(1979)018<0034:MLEOFC>2.0.CO;2

10.1029/2004WR003739

10.1029/2007WR006399

10.1029/2008WR007526