DRIMSeq: a Dirichlet-multinomial framework for multivariate count outcomes in genomics
Tóm tắt
Từ khóa
Tài liệu tham khảo
D McCarthy, 2012, Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation., Nucleic Acids Res., 40, 4288-4297, 10.1093/nar/gks042
M Robinson, 2008, Small-sample estimation of negative binomial dispersion, with applications to SAGE data., Biostatistics., 9, 321-332, 10.1093/biostatistics/kxm030
S Anders, 2010, Differential expression analysis for sequence count data., Genome Biol., 11, R106, 10.1186/gb-2010-11-10-r106
M Ritchie, 2015, Limma powers differential expression analyses for RNA-sequencing and microarray studies., Nucleic Acids Res., 43, e47, 10.1093/nar/gkv007
C Law, 2014, voom: Precision weights unlock linear model analysis tools for RNA-seq read counts., Genome Biol., 15, R29, 10.1186/gb-2014-15-2-r29
J Mosimann, 1962, On the compound multinomial distribution, the multivariate β-distribution, and correlations among proportions., Biometrika., 49, 65-82, 10.2307/2333468
T Tvedebrink, 2010, Overdispersion in allelic counts and θ-correction in forensic genetics., Theor Popul Biol., 78, 200-210, 10.1016/j.tpb.2010.07.002
J Chen, 2013, Variable Selection for Sparse Dirichlet-Multinomial Regression With an Application To Microbiome Data Analysis., Ann Appl Stat., 7, 418-442, 10.1214/12-AOAS592
G Finak, 2014, Mixture models for single-cell assays with applications to vaccine studies., Biostatistics., 15, 87-101, 10.1093/biostatistics/kxt024
R Samb, 2015, Using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling., Stat Appl Genet Mol Biol., 14, 517-532, 10.1515/sagmb-2014-0098
J Mosimann, 1963, On the Compound Negative Multinomial Distribution and Correlations Among Inversely Sampled Pollen Counts., Biometrika., 50, 47-54, 10.1093/biomet/50.1-2.47
D Farewell, 2013, Dirichlet negative multinomial regression for overdispersed correlated count data., Biostatistics., 14, 395-404, 10.1093/biostatistics/kxs050
D Sun, 2014, MOABS: model based analysis of bisulfite sequencing data., Genome Biol., 15, R38, 10.1186/gb-2014-15-2-r38
Y Park, 2014, MethylSig: a whole genome DNA methylation analysis pipeline., Bioinformatics., 30, 2414-22, 10.1093/bioinformatics/btu339
H Feng, 2014, A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data., Nucleic Acids Res., 42, e69, 10.1093/nar/gku154
E Wang, 2008, Alternative isoform regulation in human tissue transcriptomes., Nature., 456, 470-6, 10.1038/nature07509
G Wang, 2007, Splicing in disease: disruption of the splicing code and the decoding machinery., Nat Rev Genet., 8, 749-61, 10.1038/nrg2164
J Tazi, 2009, Alternative splicing and disease., Biochim Biophys Acta., 1792, 14-26, 10.1016/j.bbadis.2008.09.017
J Hooper, 2014, A survey of software for genome-wide discovery of differential splicing in RNA-Seq data., Hum Genomics., 8, 3, 10.1186/1479-7364-8-3
M Robinson, 2010, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data., Bioinformatics., 26, 139-140, 10.1093/bioinformatics/btp616
A Derti, 2012, A quantitative atlas of polyadenylation in five mammals., Genome Res., 22, 1173-1183, 10.1101/gr.132563.111
G Alamancos, 2014, Methods to study splicing from high-throughput RNA sequencing data., Methods Mol Biol., 1126, 357-397, 10.1007/978-1-62703-980-2_26
C Soneson, 2016, Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage., Genome Biol., 17, 12, 10.1186/s13059-015-0862-3
Y Liao, 2014, FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features., Bioinformatics., 30, 923-930, 10.1093/bioinformatics/btt656
S Anders, 2012, Detecting differential usage of exons from RNA-seq data., Genome Res., 22, 2008-2017, 10.1101/gr.133744.111
S Anders, 2015, HTSeq--a Python framework to work with high-throughput sequencing data., Bioinformatics., 31, 166-169, 10.1093/bioinformatics/btu638
H Ongen, 2015, Alternative Splicing QTLs in European and African Populations., Am J Hum Genet., 97, 567-575, 10.1016/j.ajhg.2015.09.004
Y Katz, 2010, Analysis and design of RNA sequencing experiments for identifying isoform regulation., Nat Methods., 7, 1009-1015, 10.1038/nmeth.1528
S Shen, 2014, rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data., Proc Natl Acad Sci U S A., 111, E5593-601, 10.1073/pnas.1419161111
G Alamancos, 2015, Leveraging transcript quantification for fast computation of alternative splicing profiles., RNA., 21, 1521-1531, 10.1261/rna.051557.115
L Goldstein, 2016, Prediction and Quantification of Splice Events from RNA-Seq Data., PLoS One., 11, e0156132, 10.1371/journal.pone.0156132
K Zhao, 2013, GLiMMPS: Robust statistical model for regulatory variation of alternative splicing using RNA-seq data., Genome Biol., 14, R74, 10.1186/gb-2013-14-7-r74
C Jia, 2014, Mapping Splicing Quantitative Trait Loci in RNA-Seq., Cancer Inform., 13, 35-43, 10.4137/CIN.S13971
Y Hu, 2014, PennSeq: accurate isoform-specific gene expression quantification in RNA-Seq by modeling non-uniform read distribution., Nucleic Acids Res., 42, e20, 10.1093/nar/gkt1304
J Monlong, 2014, Identification of genetic variants associated with alternative splicing using sQTLseekeR., Nat Commun., 5, 10.1038/ncomms5698
P Glaus, 2012, Identifying differentially expressed transcripts from RNA-seq data with biological variation., Bioinformatics., 28, 1721-1728, 10.1093/bioinformatics/bts260
D Rossell, 2014, Quantifying Alternative Splicing From Paired-End RNA-Sequencing Data., Ann Appl Stat., 8, 309-330, 10.1214/13-AOAS687
C Trapnell, 2010, Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation., Nat Biotechnol., 28, 511-515, 10.1038/nbt.1621
B Li, 2011, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome., BMC Bioinformatics., 12, 323, 10.1186/1471-2105-12-323
E Bernard, 2014, Efficient RNA isoform identification and quantification from RNA-Seq data with network flows., Bioinformatics., 30, 2447-2455, 10.1093/bioinformatics/btu317
R Patro, 2014, Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms., Nat Biotechnol., 32, 462-4, 10.1038/nbt.2862
N Bray, 2016, Near-optimal probabilistic RNA-seq quantification., Nat Biotechnol., 34, 525-7, 10.1038/nbt.3519
R Patro, 2015, Salmon: Accurate, Versatile and Ultrafast Quantification from RNA-seq Data using Lightweight-Alignment., bioRxiv., 021592, 10.1101/021592
A Kanitz, 2015, Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data., Genome Biol., 16, 150, 10.1186/s13059-015-0702-5
M Teng, 2016, A benchmark for RNA-seq quantification pipelines., Genome Biol., 17, 74, 10.1186/s13059-016-0940-1
T Lappalainen, 2013, Transcriptome and genome sequencing uncovers functional variation in humans., Nature., 501, 506-11, 10.1038/nature12531
A Battle, 2014, Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals., Genome Res., 24, 14-24, 10.1101/gr.155192.113
J Pickrell, 2010, Understanding mechanisms underlying human gene expression variation with RNA sequencing., Nature., 464, 768-772, 10.1038/nature08872
S Montgomery, 2010, Transcriptome genetics using second generation sequencing in a Caucasian population., Nature., 464, 773-777, 10.1038/nature08903
H Ongen, 2016, Fast and efficient QTL mapper for thousands of molecular phenotypes., Bioinformatics., 32, 1479-85, 10.1093/bioinformatics/btv722
C Trapnell, 2013, Differential analysis of gene regulation at transcript resolution with RNA-seq., Nat Biotechnol., 31, 46-53, 10.1038/nbt.2450
M Robinson, 2007, Moderated statistical tests for assessing differences in tag abundance., Bioinformatics., 23, 2881-2887, 10.1093/bioinformatics/btm453
N Reid, 2003, Likelihood inference in the presence of nuisance parameters, 7
P McCullagh, 1990, A Simple Method for the Adjustment of Profile Likelihoods., J R Stat Soc Series B Stat Methodol., 52, 325-344, 10.1111/j.2517-6161.1990.tb01790.x
D Cox, 1987, Parameter orthogonality and approximate conditional inference., J R Stat Soc Series B Stat Methodol., 49, 1-39
J Choi, 2009, Intrinsic variability of gene expression encoded in nucleosome positioning sequences., Nat Genet., 41, 498-503, 10.1038/ng.319
A Singh, 2013, Quantifying intrinsic and extrinsic variability in stochastic gene expression models., PLoS One., 8, e84301, 10.1371/journal.pone.0084301
A Brooks, 2011, Conservation of an RNA regulatory map between Drosophila and mammals., Genome Res., 21, 193-202, 10.1101/gr.108662.110
S Kim, 2013, A high-dimensional, deep-sequencing study of lung adenocarcinoma in female never-smokers., PLoS One., 8, e55596, 10.1371/journal.pone.0055596
M Nowicka, 2016, Source code of the R package used for analyses in "DRIMSeq: a Dirichlet-multinomial framework for multivariate count outcomes in genomics" paper., Zenodo.
M Nowicka, 2016, Source code of the analyses in the "DRIMSeq: a Dirichlet-multinomial framework for multivariate count outcomes in genomics” paper., Zenodo.