DOX-loaded hydroxyapatite nanoclusters for colorectal cancer (CRC) chemotherapy: Evaluation based on the cancer cells and organoids

SLAS Technology - Tập 28 - Trang 22-31 - 2023
Tianhao Deng1,2, Dandan Luo1,2,3, Rui Zhang1,2, Ruibo Zhao1,2, Yeting Hu4, Qingwei Zhao5, Shibo Wang1,2, M. Zubair Iqbal1,2, Xiangdong Kong1,2
1Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
2Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
3School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
4Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, PR China
5Research Center for Clinical Pharmacy & Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310018, PR China

Tài liệu tham khảo

Siegel, 2021, Cancer Statistics, 2021, CA Cancer J Clin., 71, 7, 10.3322/caac.21654 Yi, 2021, A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy, Nano Res, 15, 1205, 10.1007/s12274-021-3626-2 Sastry, 2005, Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine, Pediatr Hemat Oncol, 22, 441, 10.1080/08880010590964381 Nicolaysen, 2020, Nephrotoxic Chemotherapy Agents: Old and New, Adv Chronic Kidney D, 27, 38, 10.1053/j.ackd.2019.08.005 Chiruvella, 2020, Management of nephrotoxicity of chemotherapy and targeted agents: 2020, Am J Cancer Res, 10, 4151 Raschi, 2010, Anticancer drugs and cardiotoxicity: Insights and perspectives in the era of targeted therapy, Pharmacol Therapeut, 125, 196, 10.1016/j.pharmthera.2009.10.002 Adriana Albini, 2010, Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention, J Natl Cancer I, 102, 14, 10.1093/jnci/djp440 Zhang, 2021, New combination chemotherapy of cisplatin with an electron-donating compound for treatment of multiple cancers, Sci Rep 11, 788 He, 2020, Black phosphorus quantum dots cause nephrotoxicity in organoids, mice, and human cells, Small, 16, 10.1002/smll.202001371 Liu, 2020, Drug screening model meets cancer organoid technology, Transl. Oncol., 13, 10.1016/j.tranon.2020.100840 Sato, 2009, Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche, Nature, 459, 262, 10.1038/nature07935 N. Gjorevski, N. Sachs, A. Manfrin, S. Giger, M.E. Bragina, P. Ordóñez-Morán, H. Clevers, M.P.J.N. Lutolf, Designer matrices for intestinal stem cell and organoid culture, 539(2016) 560-564, doi:10.1038/nature20168. Lu, 2012, A novel 3D liver organoid system for elucidation of hepatic glucose metabolism, Bioengineering, 109, 595 L. Broutier, A. Andersson-Rolf, C.J. Hindley, S.F. Boj, H. Clevers, B.-K. Koo, M.J.N.p. Huch, Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation, 11(2016) 1724-1743, doi:10.1038/nprot.2016.097. M. Takasato, P.X. Er, H.S. Chiu, B. Maier, G.J. Baillie, C. Ferguson, R.G. Parton, E.J. Wolvetang, M.S. Roost, S.M.J.N. Chuva de Sousa Lopes, Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis, 526(2015) 564-568, doi:10.1038/nature15695. W.R. Karthaus, P.J. Iaquinta, J. Drost, A. Gracanin, R. Van Boxtel, J. Wongvipat, C.M. Dowling, D. Gao, H. Begthel, N.J.C. Sachs, Identification of multipotent luminal progenitor cells in human prostate organoid cultures, 159(2014) 163-175, doi:10.1016/j.cell.2014.08.017. A.J. Miller, B.R. Dye, D. Ferrer-Torres, D.R. Hill, A.W. Overeem, L.D. Shea, J.R.J.N.p. Spence, Generation of lung organoids from human pluripotent stem cells in vitro, 14(2019) 518-540, doi:10.1038/s41596-018-0104-8. G. Rossi, A. Manfrin, M.P.J.N.R.G. Lutolf, Progress and potential in organoid research, 19(2018) 671-687, doi:10.1038/s41576-018-0051-9. M.A. Lancaster, M. Renner, C.-A. Martin, D. Wenzel, L.S. Bicknell, M.E. Hurles, T. Homfray, J.M. Penninger, A.P. Jackson, J.A.J.N. Knoblich, Cerebral organoids model human brain development and microcephaly, 501(2013) 373-379, doi:10.1038/nature12517. Ermis, 2021, Red emissive N-S co-doped carbon dots for live imaging of tumor spheroid in the microfluidic device, J Sci-Adv Mater Dev, 7 Kondo, 2019, Application of cancer organoid model for drug screening and personalized therapy, Cells, 8, 470, 10.3390/cells8050470 Davoudi, 2021, Gut organoid as a new platform to study alginate and chitosan mediated PLGA nanoparticles for drug delivery, Mar Drugs, 19, 10.3390/md19050282 Khalifehzadeh, 2020, Biodegradable calcium phosphate nanoparticles for cancer therapy, Adv Colloid Interface Sci., 279, 10.1016/j.cis.2020.102157 Ou, 2019, Functionalization of SF/HAP Scaffold with GO-PEI-miRNA inhibitor complexes to enhance bone regeneration through activating transcription factor 4, Theranostics, 9, 4525, 10.7150/thno.34676 Sun, 2018, Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumors, ACS Appl Mater Inter, 10, 7832, 10.1021/acsami.7b19281 Cai, 2020, Biodegradable inorganic nanostructured biomaterials for drug delivery, Adv Mater Interfaces., 7, 10.1002/admi.202000819 Sun, 2016, Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo, ACS Appl Mater Inter, 8, 25680, 10.1021/acsami.6b06094 Z.-S. Liu, S.-L. Tang, Z.-L.J.W.J.o.G. Ai, Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells, 9(2003) 1968, doi:10.3748/wjg.v9.i9.1968. Huang, 2019, Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics, Biomater Sci, 7, 3942, 10.1039/C9BM00831D Wang, 2020, Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics, Small, 16 Wang, 2020, S.a. Physicochemical, E. Aspects, Nisin-loaded polydopamine/hydroxyapatite composites: Biomimetic synthesis, and in vitro bioactivity and antibacterial activity evaluations, Colloid Surface A, 602, 10.1016/j.colsurfa.2020.125101 Jin, 2020, Nanoparticles modified by polydopamine: Working as "drug" carriers, Bioactive Mater, 5, 522, 10.1016/j.bioactmat.2020.04.003 Lei, 2019, Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy, Mater Sci Eng C Mater Biol Appl, 105, 10.1016/j.msec.2019.110103 K. Chen, K. Xie, Q. Long, L. Deng, Z. Fu, H. Xiao, L.J.R.A. Xie, Fabrication of core–shell Ag@ pDA@ HAp nanoparticles with the ability for controlled release of Ag+ and superior hemocompatibility, 7(2017) 29368-29377, doi:10.1039/C7RA03494F. Xu, 2018, Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods, Acta Biomaterialia, 77, 352, 10.1016/j.actbio.2018.07.030 Dong, 2018, Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity, J Am Chem Soc, 140, 2165, 10.1021/jacs.7b11036 Mrowczynski, 2018, Polydopamine-based multifunctional (nano)materials for cancer therapy, ACS Appl Mater Inter, 10, 7541, 10.1021/acsami.7b08392 Kalyane, 2019, Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer, Mater Sci Eng C, 98, 1252, 10.1016/j.msec.2019.01.066 Ashrafi, 2019, Mentha piperita essential oils loaded in a chitosan nanogel with inhibitory effect on biofilm formation against S. mutans on the dental surface, Carbohydr Polym, 212, 142, 10.1016/j.carbpol.2019.02.018 Wan, 2022, Surface-fabrication of fluorescent hydroxyapatite for cancer cell imaging and bio-printing applications, Biosensors (Basel), 12 Wang, 2016, Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation, Biomaterials, 81, 114, 10.1016/j.biomaterials.2015.11.037 Ghosh, 2020, Nanotechnology, Biomedical application of doxorubicin coated hydroxyapatite—poly (lactide-co-glycolide) nanocomposite for controlling osteosarcoma therapeutics, J Nanosci Nanotechnol, 20, 3994, 10.1166/jnn.2020.17689 Verma, 2018, Covalent immobilization of doxorubicin in glycine functionalized hydroxyapatite nanoparticles for pH-responsive release, New J Chem, 42, 6283, 10.1039/C7NJ04706A Feng, 2021, Polydopamine-anchored polyether on Fe3O4 as magnetic recyclable nanoparticle-demulsifiers, Colloid Surface A, 617, 10.1016/j.colsurfa.2021.126142 Miao, 2015, Intrinsically Mn2+-chelated polydopamine nanoparticles for simultaneous magnetic resonance imaging and photothermal ablation of cancer cells, ACS Appl Mater Interfaces, 7, 16946, 10.1021/acsami.5b06265 Lv, 2022, Carrier-drug” layer-by-layer hybrid assembly of biocompatible polydopamine nanoparticles to amplify photo-chemotherapy, Nanoscale, 10.1039/D2NR03200G Y. Shaked, The pro-tumorigenic host response to cancer therapies, 19(2019) 667-685, doi:10.1038/s41568-019-0209-6. Zhang, 2020, A novel strategy for tumor therapy: targeted, PAA-functionalized nano-hydroxyapatite nanomedicine, J Mater Chem B, 8, 9589, 10.1039/D0TB01603A Zhang, 2019, Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles, Chem, 5, 2171, 10.1016/j.chempr.2019.06.003 Nugraha, 2018, Human cardiac organoids for disease modeling, Clin Pharmacol Ther, 105, 79, 10.1002/cpt.1286 Devarasetty, 2018, Applications of bioengineered 3D tissue and tumor organoids in drug development and precision medicine: current and future, BioDrugs, 32, 53, 10.1007/s40259-017-0258-x