DOX-loaded hydroxyapatite nanoclusters for colorectal cancer (CRC) chemotherapy: Evaluation based on the cancer cells and organoids
Tài liệu tham khảo
Siegel, 2021, Cancer Statistics, 2021, CA Cancer J Clin., 71, 7, 10.3322/caac.21654
Yi, 2021, A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy, Nano Res, 15, 1205, 10.1007/s12274-021-3626-2
Sastry, 2005, Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine, Pediatr Hemat Oncol, 22, 441, 10.1080/08880010590964381
Nicolaysen, 2020, Nephrotoxic Chemotherapy Agents: Old and New, Adv Chronic Kidney D, 27, 38, 10.1053/j.ackd.2019.08.005
Chiruvella, 2020, Management of nephrotoxicity of chemotherapy and targeted agents: 2020, Am J Cancer Res, 10, 4151
Raschi, 2010, Anticancer drugs and cardiotoxicity: Insights and perspectives in the era of targeted therapy, Pharmacol Therapeut, 125, 196, 10.1016/j.pharmthera.2009.10.002
Adriana Albini, 2010, Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention, J Natl Cancer I, 102, 14, 10.1093/jnci/djp440
Zhang, 2021, New combination chemotherapy of cisplatin with an electron-donating compound for treatment of multiple cancers, Sci Rep 11, 788
He, 2020, Black phosphorus quantum dots cause nephrotoxicity in organoids, mice, and human cells, Small, 16, 10.1002/smll.202001371
Liu, 2020, Drug screening model meets cancer organoid technology, Transl. Oncol., 13, 10.1016/j.tranon.2020.100840
Sato, 2009, Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche, Nature, 459, 262, 10.1038/nature07935
N. Gjorevski, N. Sachs, A. Manfrin, S. Giger, M.E. Bragina, P. Ordóñez-Morán, H. Clevers, M.P.J.N. Lutolf, Designer matrices for intestinal stem cell and organoid culture, 539(2016) 560-564, doi:10.1038/nature20168.
Lu, 2012, A novel 3D liver organoid system for elucidation of hepatic glucose metabolism, Bioengineering, 109, 595
L. Broutier, A. Andersson-Rolf, C.J. Hindley, S.F. Boj, H. Clevers, B.-K. Koo, M.J.N.p. Huch, Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation, 11(2016) 1724-1743, doi:10.1038/nprot.2016.097.
M. Takasato, P.X. Er, H.S. Chiu, B. Maier, G.J. Baillie, C. Ferguson, R.G. Parton, E.J. Wolvetang, M.S. Roost, S.M.J.N. Chuva de Sousa Lopes, Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis, 526(2015) 564-568, doi:10.1038/nature15695.
W.R. Karthaus, P.J. Iaquinta, J. Drost, A. Gracanin, R. Van Boxtel, J. Wongvipat, C.M. Dowling, D. Gao, H. Begthel, N.J.C. Sachs, Identification of multipotent luminal progenitor cells in human prostate organoid cultures, 159(2014) 163-175, doi:10.1016/j.cell.2014.08.017.
A.J. Miller, B.R. Dye, D. Ferrer-Torres, D.R. Hill, A.W. Overeem, L.D. Shea, J.R.J.N.p. Spence, Generation of lung organoids from human pluripotent stem cells in vitro, 14(2019) 518-540, doi:10.1038/s41596-018-0104-8.
G. Rossi, A. Manfrin, M.P.J.N.R.G. Lutolf, Progress and potential in organoid research, 19(2018) 671-687, doi:10.1038/s41576-018-0051-9.
M.A. Lancaster, M. Renner, C.-A. Martin, D. Wenzel, L.S. Bicknell, M.E. Hurles, T. Homfray, J.M. Penninger, A.P. Jackson, J.A.J.N. Knoblich, Cerebral organoids model human brain development and microcephaly, 501(2013) 373-379, doi:10.1038/nature12517.
Ermis, 2021, Red emissive N-S co-doped carbon dots for live imaging of tumor spheroid in the microfluidic device, J Sci-Adv Mater Dev, 7
Kondo, 2019, Application of cancer organoid model for drug screening and personalized therapy, Cells, 8, 470, 10.3390/cells8050470
Davoudi, 2021, Gut organoid as a new platform to study alginate and chitosan mediated PLGA nanoparticles for drug delivery, Mar Drugs, 19, 10.3390/md19050282
Khalifehzadeh, 2020, Biodegradable calcium phosphate nanoparticles for cancer therapy, Adv Colloid Interface Sci., 279, 10.1016/j.cis.2020.102157
Ou, 2019, Functionalization of SF/HAP Scaffold with GO-PEI-miRNA inhibitor complexes to enhance bone regeneration through activating transcription factor 4, Theranostics, 9, 4525, 10.7150/thno.34676
Sun, 2018, Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumors, ACS Appl Mater Inter, 10, 7832, 10.1021/acsami.7b19281
Cai, 2020, Biodegradable inorganic nanostructured biomaterials for drug delivery, Adv Mater Interfaces., 7, 10.1002/admi.202000819
Sun, 2016, Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo, ACS Appl Mater Inter, 8, 25680, 10.1021/acsami.6b06094
Z.-S. Liu, S.-L. Tang, Z.-L.J.W.J.o.G. Ai, Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells, 9(2003) 1968, doi:10.3748/wjg.v9.i9.1968.
Huang, 2019, Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics, Biomater Sci, 7, 3942, 10.1039/C9BM00831D
Wang, 2020, Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics, Small, 16
Wang, 2020, S.a. Physicochemical, E. Aspects, Nisin-loaded polydopamine/hydroxyapatite composites: Biomimetic synthesis, and in vitro bioactivity and antibacterial activity evaluations, Colloid Surface A, 602, 10.1016/j.colsurfa.2020.125101
Jin, 2020, Nanoparticles modified by polydopamine: Working as "drug" carriers, Bioactive Mater, 5, 522, 10.1016/j.bioactmat.2020.04.003
Lei, 2019, Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy, Mater Sci Eng C Mater Biol Appl, 105, 10.1016/j.msec.2019.110103
K. Chen, K. Xie, Q. Long, L. Deng, Z. Fu, H. Xiao, L.J.R.A. Xie, Fabrication of core–shell Ag@ pDA@ HAp nanoparticles with the ability for controlled release of Ag+ and superior hemocompatibility, 7(2017) 29368-29377, doi:10.1039/C7RA03494F.
Xu, 2018, Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods, Acta Biomaterialia, 77, 352, 10.1016/j.actbio.2018.07.030
Dong, 2018, Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity, J Am Chem Soc, 140, 2165, 10.1021/jacs.7b11036
Mrowczynski, 2018, Polydopamine-based multifunctional (nano)materials for cancer therapy, ACS Appl Mater Inter, 10, 7541, 10.1021/acsami.7b08392
Kalyane, 2019, Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer, Mater Sci Eng C, 98, 1252, 10.1016/j.msec.2019.01.066
Ashrafi, 2019, Mentha piperita essential oils loaded in a chitosan nanogel with inhibitory effect on biofilm formation against S. mutans on the dental surface, Carbohydr Polym, 212, 142, 10.1016/j.carbpol.2019.02.018
Wan, 2022, Surface-fabrication of fluorescent hydroxyapatite for cancer cell imaging and bio-printing applications, Biosensors (Basel), 12
Wang, 2016, Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation, Biomaterials, 81, 114, 10.1016/j.biomaterials.2015.11.037
Ghosh, 2020, Nanotechnology, Biomedical application of doxorubicin coated hydroxyapatite—poly (lactide-co-glycolide) nanocomposite for controlling osteosarcoma therapeutics, J Nanosci Nanotechnol, 20, 3994, 10.1166/jnn.2020.17689
Verma, 2018, Covalent immobilization of doxorubicin in glycine functionalized hydroxyapatite nanoparticles for pH-responsive release, New J Chem, 42, 6283, 10.1039/C7NJ04706A
Feng, 2021, Polydopamine-anchored polyether on Fe3O4 as magnetic recyclable nanoparticle-demulsifiers, Colloid Surface A, 617, 10.1016/j.colsurfa.2021.126142
Miao, 2015, Intrinsically Mn2+-chelated polydopamine nanoparticles for simultaneous magnetic resonance imaging and photothermal ablation of cancer cells, ACS Appl Mater Interfaces, 7, 16946, 10.1021/acsami.5b06265
Lv, 2022, Carrier-drug” layer-by-layer hybrid assembly of biocompatible polydopamine nanoparticles to amplify photo-chemotherapy, Nanoscale, 10.1039/D2NR03200G
Y. Shaked, The pro-tumorigenic host response to cancer therapies, 19(2019) 667-685, doi:10.1038/s41568-019-0209-6.
Zhang, 2020, A novel strategy for tumor therapy: targeted, PAA-functionalized nano-hydroxyapatite nanomedicine, J Mater Chem B, 8, 9589, 10.1039/D0TB01603A
Zhang, 2019, Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles, Chem, 5, 2171, 10.1016/j.chempr.2019.06.003
Nugraha, 2018, Human cardiac organoids for disease modeling, Clin Pharmacol Ther, 105, 79, 10.1002/cpt.1286
Devarasetty, 2018, Applications of bioengineered 3D tissue and tumor organoids in drug development and precision medicine: current and future, BioDrugs, 32, 53, 10.1007/s40259-017-0258-x