DNA hypomethylation drives changes in MAGE-A gene expression resulting in alteration of proliferative status of cells

Ashley Colemon1, Taylor Harris2, Saumya Ramanathan2
1Fisk-Vanderbilt Masters-to-PhD Bridge Program, Fisk University, Nashville, TN, USA
2Department of Life and Physical Sciences, Fisk University, Nashville, TN, USA

Tóm tắt

Abstract

Melanoma Antigen Genes (MAGEs) are a family of genes that have piqued the interest of scientists for their unique expression pattern. A subset of MAGEs (Type I) are expressed in spermatogonial cells and in no other somatic tissue, and then re-expressed in many cancers. Type I MAGEs are often referred to as cancer-testis antigens due to this expression pattern, while Type II MAGEs are more ubiquitous in expression. This study determines the cause and consequence of the aberrant expression of the MAGE-A subfamily of cancer-testis antigens. We have discovered that MAGE-A genes are regulated by DNA methylation, as revealed by treatment with 5-azacytidine, an inhibitor of DNA methyltransferases. Furthermore, bioinformatics analysis of existing methylome sequencing data also corroborates our findings. The consequence of expressing certain MAGE-A genes is an increase in cell proliferation and colony formation and resistance to chemo-therapeutic agent 5-fluorouracil and DNA damaging agent sodium arsenite. Taken together, these data indicate that DNA methylation plays a crucial role in regulating the expression of MAGE-A genes which then act as drivers of cell proliferation, anchorage-independent growth and chemo-resistance that is critical for cancer-cell survival.

Từ khóa


Tài liệu tham khảo

van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science (80- ). 1991;254:1643–7.

Chomez P, De Backer O, Bertrand M, De Plaen E, Boon T, Lucas S. An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res. 2001;61:5544–51.

Lee AK, Potts PR. A comprehensive guide to the MAGE family of ubiquitin ligases. J Mol Biol. 2017;429:1114–42.

Doyle JM, Gao J, Wang J, Yang M, Potts PR. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol Cell. 2010;39:963–74.

Pineda CT, Ramanathan S, Fon Tacer K, Weon JL, Potts MB, Ou YH, et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell. 2015;160:715–28.

Yang SW, Li L, Connelly JP, Porter SN, Kodali K, Gan H, et al. A Cancer-Specific Ubiquitin Ligase Drives mRNA Alternative Polyadenylation by Ubiquitinating the mRNA 3′ End Processing Complex. Mol Cell. 2020;77:1206–1221.e7. https://doi.org/10.1016/j.molcel.2019.12.022.

Hao YH, Doyle JM, Ramanathan S, Gomez TS, Jia D, Xu M, et al. Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell. 2013;152:1051–64.

Hao YH, Fountain MD, Fon Tacer K, Xia F, Bi W, Kang SHL, et al. USP7 acts as a molecular rheostat to promote WASH-dependent Endosomal protein recycling and is mutated in a human neurodevelopmental disorder. Mol Cell. 2015;59:956–69.

Mellor J. The dynamics of chromatin remodeling at promoters. Mol Cell. 2005;19:147–57.

Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms. 1839;2014:155–68.

Hao SL, Ni F Da, Yang WX. The dynamics and regulation of chromatin remodeling during spermiogenesis. Gene. 2019;706 20 July 2019:201–10.

Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A. A decade of exploring the mammalian sperm Epigenome: paternal epigenetic and Transgenerational inheritance. Front Cell Dev Biol. 2018;6:50. https://doi.org/10.3389/fcell.2018.00050.

De Smet C, Lurquin C, Lethé B, Martelange V, Boon T. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol. 1999;19:7327–35.

De Smet C, Loriot A, Boon T. Promoter-dependent mechanism leading to selective Hypomethylation within the 5′ region of gene MAGE-A1 in tumor cells. Mol Cell Biol. 2004;24:4781–90.

James SR, Cedeno CD, Sharma A, Zhang W, Mohler JL, Odunsi K, et al. DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11. Epigenetics. 2013;8:849–63.

Fon Tacer K, Montoya MC, Oatley MJ, Lord T, Oatley JM, Klein J, et al. MAGE cancer-testis antigens protect the mammalian germline under environmental stress. Sci Adv. 2019;5:eaav4832. https://doi.org/10.1126/sciadv.aav4832.

Tyagi P, Mirakhur B. MAGRIT: the largest-ever phase iii lung cancer trial aims to establish a novel tumor-specific approach to therapy. Clin Lung Cancer. 2009;10:371–4.

Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17:P822–35.

Shukla SA, Bachireddy P, Schilling B, Galonska C, Zhan Q, Bango C, et al. Cancer-Germline Antigen Expression Discriminates Clinical Outcome to CTLA-4 Blockade. Cell. 2018;173:624–633.e8.

Goldman M, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. bioRxiv. 2019;326470. https://doi.org/10.1101/326470.

Günthel M, Barnett P, Christoffels VM. Development, proliferation, and growth of the mammalian heart. Mol Ther. 2018;26:1599–609. https://doi.org/10.1016/j.ymthe.2018.05.022.

van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60. https://doi.org/10.1146/annurev.physiol.010908.163145.

Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14:561–74. https://doi.org/10.1016/j.stem.2014.04.010.

Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505:327–34. https://doi.org/10.1038/nature12984.

Loriot A, De Plaen E, Boon T, De Smet C. Transient down-regulation of DNMT1 methyltransferase leads to activation and stable hypomethylation of MAGE-A1 in melanoma cells. J Biol Chem. 2006;281.

James SR, Link PA, Karpf AR. Epigenetic regulation of X-linked cancer/germline antigen genes by DNMT1 and DNMT3b. Oncogene. 2006;25:6975–85.

Raney BJ, Cline MS, Rosenbloom KR, Dreszer TR, Learned K, Barber GP, et al. ENCODE whole-genome data in the UCSC genome browser (2011 update). Nucleic Acids Res. 2010;39(suppl_1):D871–5. https://doi.org/10.1093/nar/gkq1017.

Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511:606–10.

Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30. https://doi.org/10.1038/nature14248.

Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43:768–75.

Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I, et al. Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet. 2012;8:e1002781.

Blattler A, Yao L, Witt H, Guo Y, Nicolet CM, Berman BP, et al. Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes. Genome Biol. 2014;15:469.

Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21:5483–95. https://doi.org/10.1038/sj.onc.1205699.

Pérez RF, Tejedor JR, Bayón GF, Fernández AF, Fraga MF. Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell. 2018;17:e12744.

Cifone MA, Fidler IJ. Correlation of patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc Natl Acad Sci U S A. 1980;77:1039–43.

Mori S, Chang JT, Andrechek ER, Matsumura N, Baba T, Yao G, et al. Anchorage-independent cell growth signature identifies tumors with metastatic potential. Oncogene. 2009;28:2796–805.

Li X, Hughes SC, Wevrick R. Evaluation of melanoma antigen (MAGE) gene expression in human cancers using the Cancer genome atlas. Cancer Genet. 2015;208:25–34.

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

Fijak M, Meinhardt A. The testis in immune privilege. Immunological Reviews. 2006;213 Oct:66–81.

Minges JT, Grossman G, Zhang P, Kafri T, Wilson EM. Post-translational down-regulation of melanoma antigen-A11 (MAGE-A11) by human p14-ARF tumor suppressor. J Biol Chem. 2015;290:25174–87.

Prakash T, Sharma VK, Adati N, Ozawa R, Kumar N, Nishida Y, et al. Expression of conjoined genes: another mechanism for gene regulation in eukaryotes. PLoS One. 2010;5:e13284.

Akiva P, Toporik A, Edelheit S, Peretz Y, Diber A, Shemesh R, et al. Transcription-mediated gene fusion in the human genome. Genome Res. 2006;16:30–6.

Roig AI, Eskiocak U, Hight SK, Kim SB, Delgado O, Souza RF, et al. Immortalized epithelial cells derived from human Colon biopsies express stem cell markers and differentiate in vitro. Gastroenterology. 2010;138:1021.

Ramirez RD, Sheridan S, Girard L, Sato M, Kim Y, Pollack J, et al. Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res. 2004;64:9027–34.