DLK1 overexpression improves sepsis-induced cardiac dysfunction and fibrosis in mice through the TGF-β1/Smad3 signaling pathway and MMPs
Tóm tắt
Từ khóa
Tài liệu tham khảo
Accornero F et al (2015) Genetic analysis of connective tissue growth factor as an effector of transforming growth factor beta signaling and Cardiac Remodeling. Mol Cell Biol 35:2154–2164. https://doi.org/10.1128/MCB.00199-15
Ahmed MS et al (2004) Connective tissue growth factor–a novel mediator of angiotensin II-stimulated cardiac fibroblast activation in heart failure in rats. J Mol Cell Cardiol 36:393–404. https://doi.org/10.1016/j.yjmcc.2003.12.004
An R et al (2016) Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Basic Res Cardiol 111:8. https://doi.org/10.1007/s00395-015-0526-1
Baladron V et al (2005) Dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Exp Cell Res 303:343–359. https://doi.org/10.1016/j.yexcr.2004.10.001
Bosmann M, Ward PA (2013) The inflammatory response in sepsis. Trends Immunol 34:129–136. https://doi.org/10.1016/j.it.2012.09.004
Carney DE, McCann UG, Schiller HJ, Gatto LA, Steinberg J, Picone AL, Nieman GF (2001) Metalloproteinase inhibition prevents acute respiratory distress syndrome. J Surg Res 99:245–252. https://doi.org/10.1006/jsre.2001.6180
Chao J, Bledsoe G, Chao L (2016) Protective role of Kallistatin in Vascular and. Organ Injury Hypertension 68:533–541. https://doi.org/10.1161/HYPERTENSIONAHA.116.07861
Dejager L, Pinheiro I, Dejonckheere E, Libert C (2011) Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol 19:198–208. https://doi.org/10.1016/j.tim.2011.01.001
Feng Q et al (2022) Anti-inflammatory effects of a SERP 30 polysaccharide from the residue of Sarcandra glabra against lipopolysaccharide-induced acute respiratory distress syndrome in mice. J Ethnopharmacol 293:115262. https://doi.org/10.1016/j.jep.2022.115262
Han CK et al (2017) Attenuation of the LPS-induced, ERK-mediated upregulation of fibrosis-related factors FGF-2, uPA, MMP-2, and MMP-9 by Carthamus tinctorius L in cardiomyoblasts. Environ Toxicol 32:754–763. https://doi.org/10.1002/tox.22275
Hu J, Van den Steen PE, Dillen C, Opdenakker G (2005) Targeting neutrophil collagenase/matrix metalloproteinase-8 and gelatinase B/matrix metalloproteinase-9 with a peptidomimetic inhibitor protects against endotoxin. Shock Biochem Pharmacol 70:535–544. https://doi.org/10.1016/j.bcp.2005.04.047
Innocenti F, Palmieri V, Guzzo A, Stefanone VT, Donnini C, Pini R (2018) SOFA score and left ventricular systolic function as predictors of short-term outcome in patients with sepsis. Intern Emerg Med 13:51–58. https://doi.org/10.1007/s11739-016-1579-3
Kakihana Y, Ito T, Nakahara M, Yamaguchi K, Yasuda T (2016) Sepsis-induced myocardial dysfunction: pathophysiology and management. J Intensive Care 4:22. https://doi.org/10.1186/s40560-016-0148-1
Karamanos N et al (2021) A guide to the composition and functions of the extracellular matrix. FEBS J 288:6850–6912. https://doi.org/10.1111/febs.15776
Kaukonen KM, Bailey M, Pilcher D, Cooper DJ, Bellomo R (2015) Systemic inflammatory response syndrome criteria in defining severe sepsis N. Engl J Med 372:1629–1638. https://doi.org/10.1056/NEJMoa1415236
Khalil H et al (2017) Fibroblast-specific TGF-beta-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest 127:3770–3783. https://doi.org/10.1172/JCI94753
Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71:549–574. https://doi.org/10.1007/s00018-013-1349-6
Kotecha A, Vallabhajosyula S, Coville HH, Kashani K (2018) Cardiorenal syndrome in sepsis: a narrative review. J Crit Care 43:122–127. https://doi.org/10.1016/j.jcrc.2017.08.044
Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225:631–637. https://doi.org/10.1002/jcp.22322
Laborda J (2000) The role of the epidermal growth factor-like protein dlk in cell differentiation. Histol Histopathol 15:119–129. https://doi.org/10.14670/HH-15.119
Latini R, Caironi P, Masson S (2016) Cardiac dysfunction and circulating cardiac markers during sepsis. Minerva Anestesiol 82:697–710
Leask A (2010) Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 106:1675–1680. https://doi.org/10.1161/CIRCRESAHA.110.217737
Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803–4810. https://doi.org/10.1242/jcs.03270
Li L et al (2014) DLK1 promotes lung cancer cell invasion through upregulation of MMP9 expression depending on notch signaling. PLoS ONE 9:e91509
Luan YY et al (2015) Effect of Regulatory T cells on promoting apoptosis of T lymphocyte and its Regulatory mechanism in Sepsis. J Interferon Cytokine Res 35:969–980. https://doi.org/10.1089/jir.2014.0235
Ma X, Qin J, Guo X (2020) MiR-181-5p protects mice from sepsis via repressing HMGB1 in an experimental model. Eur Rev Med Pharmacol Sci 24:9712–9720. https://doi.org/10.26355/eurrev_202009_23063
McClure C, Brudecki L, Ferguson DA, Yao ZQ, Moorman JP, McCall CE, El Gazzar M (2014) MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. Infect Immun 82:3816–3825. https://doi.org/10.1128/IAI.01495-14
Mei B, Zhao L, Chen L, Sul HS (2002) Only the large soluble form of preadipocyte factor-1 (Pref-1), but not the small soluble and membrane forms, inhibits adipocyte differentiation: role of alternative splicing. Biochem J 364:137–144. https://doi.org/10.1042/bj3640137
Morgan RW, Fitzgerald JC, Weiss SL, Nadkarni VM, Sutton RM, Berg RA (2017) Sepsis-associated in-hospital cardiac arrest: Epidemiology, pathophysiology, and potential therapies. J Crit Care 40:128–135. https://doi.org/10.1016/j.jcrc.2017.03.023
Nakamura T, Ebihara I, Shimada N, Shoji H, Koide H (1998) Modulation of plasma metalloproteinase-9 concentrations and peripheral blood monocyte mRNA levels in patients with septic shock: effect of fiber-immobilized polymyxin B treatment am. J Med Sci 316:355–360. https://doi.org/10.1097/00000441-199812000-00001
O’Riordan CE et al (2019) Bruton’s tyrosine kinase inhibition attenuates the Cardiac Dysfunction caused by Cecal Ligation and puncture in. Mice Front Immunol 10:2129. https://doi.org/10.3389/fimmu.2019.02129
Pan RL, Wang P, Xiang LX, Shao JZ (2011) Delta-like 1 serves as a new target and contributor to liver fibrosis down-regulated by mesenchymal stem cell transplantation. J Biol Chem 286:12340–12348. https://doi.org/10.1074/jbc.M110.194498
Parrillo JE (1989) The cardiovascular pathophysiology of sepsis. Annu Rev Med 40:469–485. https://doi.org/10.1146/annurev.me.40.020189.002345
Pchejetski D et al (2012) Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur Heart J 33:2360–2369. https://doi.org/10.1093/eurheartj/ehr389
Perramón M et al (2022) The pituitary tumour-transforming gene 1/delta‐like homologue 1 pathway plays a key role in liver fibrogenesis. Liver Int 42:651–662
Pittaway JFH, Lipsos C, Mariniello K, Guasti L (2021) The role of delta-like non-canonical notch ligand 1 (DLK1) in cancer. Endocrine-related Cancer 28:R271–R287. https://doi.org/10.1530/erc-21-0208
Potz BA, Sellke FW, Abid MR (2016) Endothelial ROS and impaired myocardial oxygen consumption in Sepsis-induced Cardiac Dysfunction. J Intensive Crit Care 2. https://doi.org/10.21767/2471-8505.100020
Rodriguez P et al (2019) Deletion of delta-like 1 homologue accelerates fibroblast-myofibroblast differentiation and induces myocardial fibrosis. Eur Heart J 40:967–978. https://doi.org/10.1093/eurheartj/ehy188
Sakai M et al (2017) Diminished responsiveness to dobutamine as an inotrope in mice with cecal ligation and puncture-induced sepsis: attribution to phosphodiesterase 4 upregulation. Am J Physiol Heart Circ Physiol 312:H1224–H1237. https://doi.org/10.1152/ajpheart.00828.2016
Steinberg J et al (2003) Metalloproteinase inhibition reduces lung injury and improves survival after cecal ligation and puncture in rats. J Surg Res 111:185–195. https://doi.org/10.1016/s0022-4804(03)00089-1
Suzuki T et al (2017) Sepsis-induced cardiac dysfunction and beta-adrenergic blockade therapy for sepsis. J Intensive Care 5:22. https://doi.org/10.1186/s40560-017-0215-2
Tomita K et al (2015) Cardiac fibroblasts: contributory role in septic cardiac dysfunction. J Surg Res 193:874–887. https://doi.org/10.1016/j.jss.2014.09.012
Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac Fibrosis: the fibroblast. Awakens Circ Res 118:1021–1040. https://doi.org/10.1161/CIRCRESAHA.115.306565
Wang J, Ji W, Xu Z, Pan T (2016) Clinical significance of plasma levels of brain natriuretic peptide and cardiac troponin T in patients with sepsis. Exp Ther Med 11:154–156. https://doi.org/10.3892/etm.2015.2863
Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10:15–26. https://doi.org/10.1038/nrcardio.2012.158
Yamashita S et al (2018) Cardioprotective and functional effects of levosimendan and milrinone in mice with cecal ligation and puncture-induced sepsis naunyn. Schmiedebergs Arch Pharmacol 391:1021–1032. https://doi.org/10.1007/s00210-018-1527-z
Zhang S, Liu Q, Xiao J, Lei J, Liu Y, Xu H, Hong Z (2016) Molecular validation of the precision-cut kidney slice (PCKS) model of renal fibrosis through assessment of TGF-beta1-induced smad and p38/ERK. Signal Int Immunopharmacol 34:32–36. https://doi.org/10.1016/j.intimp.2016.01.026