DLK1 overexpression improves sepsis-induced cardiac dysfunction and fibrosis in mice through the TGF-β1/Smad3 signaling pathway and MMPs

Journal of Molecular Histology - Tập 54 Số 6 - Trang 655-664 - 2023
Ni Zeng1, Zaijin Jian1, Junmei Xu1, Sijia Zheng1, Yongmei Fan2, Feng Xiao1
1Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
2Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha, 410011, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Accornero F et al (2015) Genetic analysis of connective tissue growth factor as an effector of transforming growth factor beta signaling and Cardiac Remodeling. Mol Cell Biol 35:2154–2164. https://doi.org/10.1128/MCB.00199-15

Ahmed MS et al (2004) Connective tissue growth factor–a novel mediator of angiotensin II-stimulated cardiac fibroblast activation in heart failure in rats. J Mol Cell Cardiol 36:393–404. https://doi.org/10.1016/j.yjmcc.2003.12.004

An R et al (2016) Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Basic Res Cardiol 111:8. https://doi.org/10.1007/s00395-015-0526-1

Baladron V et al (2005) Dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Exp Cell Res 303:343–359. https://doi.org/10.1016/j.yexcr.2004.10.001

Bosmann M, Ward PA (2013) The inflammatory response in sepsis. Trends Immunol 34:129–136. https://doi.org/10.1016/j.it.2012.09.004

Carney DE, McCann UG, Schiller HJ, Gatto LA, Steinberg J, Picone AL, Nieman GF (2001) Metalloproteinase inhibition prevents acute respiratory distress syndrome. J Surg Res 99:245–252. https://doi.org/10.1006/jsre.2001.6180

Chao J, Bledsoe G, Chao L (2016) Protective role of Kallistatin in Vascular and. Organ Injury Hypertension 68:533–541. https://doi.org/10.1161/HYPERTENSIONAHA.116.07861

Dejager L, Pinheiro I, Dejonckheere E, Libert C (2011) Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? Trends Microbiol 19:198–208. https://doi.org/10.1016/j.tim.2011.01.001

Feng Q et al (2022) Anti-inflammatory effects of a SERP 30 polysaccharide from the residue of Sarcandra glabra against lipopolysaccharide-induced acute respiratory distress syndrome in mice. J Ethnopharmacol 293:115262. https://doi.org/10.1016/j.jep.2022.115262

Han CK et al (2017) Attenuation of the LPS-induced, ERK-mediated upregulation of fibrosis-related factors FGF-2, uPA, MMP-2, and MMP-9 by Carthamus tinctorius L in cardiomyoblasts. Environ Toxicol 32:754–763. https://doi.org/10.1002/tox.22275

Hu J, Van den Steen PE, Dillen C, Opdenakker G (2005) Targeting neutrophil collagenase/matrix metalloproteinase-8 and gelatinase B/matrix metalloproteinase-9 with a peptidomimetic inhibitor protects against endotoxin. Shock Biochem Pharmacol 70:535–544. https://doi.org/10.1016/j.bcp.2005.04.047

Innocenti F, Palmieri V, Guzzo A, Stefanone VT, Donnini C, Pini R (2018) SOFA score and left ventricular systolic function as predictors of short-term outcome in patients with sepsis. Intern Emerg Med 13:51–58. https://doi.org/10.1007/s11739-016-1579-3

Kakihana Y, Ito T, Nakahara M, Yamaguchi K, Yasuda T (2016) Sepsis-induced myocardial dysfunction: pathophysiology and management. J Intensive Care 4:22. https://doi.org/10.1186/s40560-016-0148-1

Karamanos N et al (2021) A guide to the composition and functions of the extracellular matrix. FEBS J 288:6850–6912. https://doi.org/10.1111/febs.15776

Kaukonen KM, Bailey M, Pilcher D, Cooper DJ, Bellomo R (2015) Systemic inflammatory response syndrome criteria in defining severe sepsis N. Engl J Med 372:1629–1638. https://doi.org/10.1056/NEJMoa1415236

Khalil H et al (2017) Fibroblast-specific TGF-beta-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest 127:3770–3783. https://doi.org/10.1172/JCI94753

Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71:549–574. https://doi.org/10.1007/s00018-013-1349-6

Kotecha A, Vallabhajosyula S, Coville HH, Kashani K (2018) Cardiorenal syndrome in sepsis: a narrative review. J Crit Care 43:122–127. https://doi.org/10.1016/j.jcrc.2017.08.044

Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225:631–637. https://doi.org/10.1002/jcp.22322

Laborda J (2000) The role of the epidermal growth factor-like protein dlk in cell differentiation. Histol Histopathol 15:119–129. https://doi.org/10.14670/HH-15.119

Latini R, Caironi P, Masson S (2016) Cardiac dysfunction and circulating cardiac markers during sepsis. Minerva Anestesiol 82:697–710

Leask A (2010) Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 106:1675–1680. https://doi.org/10.1161/CIRCRESAHA.110.217737

Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803–4810. https://doi.org/10.1242/jcs.03270

Li L et al (2014) DLK1 promotes lung cancer cell invasion through upregulation of MMP9 expression depending on notch signaling. PLoS ONE 9:e91509

Luan YY et al (2015) Effect of Regulatory T cells on promoting apoptosis of T lymphocyte and its Regulatory mechanism in Sepsis. J Interferon Cytokine Res 35:969–980. https://doi.org/10.1089/jir.2014.0235

Ma X, Qin J, Guo X (2020) MiR-181-5p protects mice from sepsis via repressing HMGB1 in an experimental model. Eur Rev Med Pharmacol Sci 24:9712–9720. https://doi.org/10.26355/eurrev_202009_23063

McClure C, Brudecki L, Ferguson DA, Yao ZQ, Moorman JP, McCall CE, El Gazzar M (2014) MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. Infect Immun 82:3816–3825. https://doi.org/10.1128/IAI.01495-14

Mei B, Zhao L, Chen L, Sul HS (2002) Only the large soluble form of preadipocyte factor-1 (Pref-1), but not the small soluble and membrane forms, inhibits adipocyte differentiation: role of alternative splicing. Biochem J 364:137–144. https://doi.org/10.1042/bj3640137

Morgan RW, Fitzgerald JC, Weiss SL, Nadkarni VM, Sutton RM, Berg RA (2017) Sepsis-associated in-hospital cardiac arrest: Epidemiology, pathophysiology, and potential therapies. J Crit Care 40:128–135. https://doi.org/10.1016/j.jcrc.2017.03.023

Nakamura T, Ebihara I, Shimada N, Shoji H, Koide H (1998) Modulation of plasma metalloproteinase-9 concentrations and peripheral blood monocyte mRNA levels in patients with septic shock: effect of fiber-immobilized polymyxin B treatment am. J Med Sci 316:355–360. https://doi.org/10.1097/00000441-199812000-00001

O’Riordan CE et al (2019) Bruton’s tyrosine kinase inhibition attenuates the Cardiac Dysfunction caused by Cecal Ligation and puncture in. Mice Front Immunol 10:2129. https://doi.org/10.3389/fimmu.2019.02129

Pan RL, Wang P, Xiang LX, Shao JZ (2011) Delta-like 1 serves as a new target and contributor to liver fibrosis down-regulated by mesenchymal stem cell transplantation. J Biol Chem 286:12340–12348. https://doi.org/10.1074/jbc.M110.194498

Parrillo JE (1989) The cardiovascular pathophysiology of sepsis. Annu Rev Med 40:469–485. https://doi.org/10.1146/annurev.me.40.020189.002345

Pchejetski D et al (2012) Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur Heart J 33:2360–2369. https://doi.org/10.1093/eurheartj/ehr389

Perramón M et al (2022) The pituitary tumour-transforming gene 1/delta‐like homologue 1 pathway plays a key role in liver fibrogenesis. Liver Int 42:651–662

Pittaway JFH, Lipsos C, Mariniello K, Guasti L (2021) The role of delta-like non-canonical notch ligand 1 (DLK1) in cancer. Endocrine-related Cancer 28:R271–R287. https://doi.org/10.1530/erc-21-0208

Potz BA, Sellke FW, Abid MR (2016) Endothelial ROS and impaired myocardial oxygen consumption in Sepsis-induced Cardiac Dysfunction. J Intensive Crit Care 2. https://doi.org/10.21767/2471-8505.100020

Rodriguez P et al (2019) Deletion of delta-like 1 homologue accelerates fibroblast-myofibroblast differentiation and induces myocardial fibrosis. Eur Heart J 40:967–978. https://doi.org/10.1093/eurheartj/ehy188

Sakai M et al (2017) Diminished responsiveness to dobutamine as an inotrope in mice with cecal ligation and puncture-induced sepsis: attribution to phosphodiesterase 4 upregulation. Am J Physiol Heart Circ Physiol 312:H1224–H1237. https://doi.org/10.1152/ajpheart.00828.2016

Steinberg J et al (2003) Metalloproteinase inhibition reduces lung injury and improves survival after cecal ligation and puncture in rats. J Surg Res 111:185–195. https://doi.org/10.1016/s0022-4804(03)00089-1

Suzuki T et al (2017) Sepsis-induced cardiac dysfunction and beta-adrenergic blockade therapy for sepsis. J Intensive Care 5:22. https://doi.org/10.1186/s40560-017-0215-2

Tomita K et al (2015) Cardiac fibroblasts: contributory role in septic cardiac dysfunction. J Surg Res 193:874–887. https://doi.org/10.1016/j.jss.2014.09.012

Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac Fibrosis: the fibroblast. Awakens Circ Res 118:1021–1040. https://doi.org/10.1161/CIRCRESAHA.115.306565

Wang J, Ji W, Xu Z, Pan T (2016) Clinical significance of plasma levels of brain natriuretic peptide and cardiac troponin T in patients with sepsis. Exp Ther Med 11:154–156. https://doi.org/10.3892/etm.2015.2863

Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10:15–26. https://doi.org/10.1038/nrcardio.2012.158

Yamashita S et al (2018) Cardioprotective and functional effects of levosimendan and milrinone in mice with cecal ligation and puncture-induced sepsis naunyn. Schmiedebergs Arch Pharmacol 391:1021–1032. https://doi.org/10.1007/s00210-018-1527-z

Zhang S, Liu Q, Xiao J, Lei J, Liu Y, Xu H, Hong Z (2016) Molecular validation of the precision-cut kidney slice (PCKS) model of renal fibrosis through assessment of TGF-beta1-induced smad and p38/ERK. Signal Int Immunopharmacol 34:32–36. https://doi.org/10.1016/j.intimp.2016.01.026

Zheng G, Pan M, Jin W, Jin G, Huang Y (2017) MicroRNA-135a is up-regulated and aggravates myocardial depression in sepsis via regulating p38 MAPK/NF-κB. Pathw Int Immunopharmacol 45:6–12. https://doi.org/10.1016/j.intimp.2017.01.029