Mô phỏng cấu trúc điện tử DFT và sự hấp phụ của Germanium trong Graphene có tổ chức với khuyết tật

Pleiades Publishing Ltd - Tập 51 - Trang 83-96 - 2022
M. M. Asadov1,2, S. N. Mustafaeva3, S. S. Guseinova3, V. F. Lukichev4
1Nagiyev Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
2Scientific Research Institute “Geotechnological Problems of Oil, Gas and Chemistry”, Baku, Azerbaijan
3Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
4Valiev Physics and Technology Institute, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Kết quả của các nghiên cứu bằng phương pháp lý thuyết chức năng mật độ (DFT) về mật độ trạng thái điện tử (DOS) của các supercell của giao diện graphene/Ge có khuyết tật được trình bày. Những quy luật biến đổi của DOS trong chuỗi graphene/Ge → graphene + khuyết tật/Ge (GPV) được nghiên cứu. Các đặc điểm phân bố của mật độ trạng thái điện tử tại giao diện graphene/Ge có khuyết tật được thảo luận. Tính chất liên kết giữa graphene và germanium cũng như tính chất hấp phụ của hệ thống GPV–Ge được nghiên cứu dựa trên các tính toán DFT và mô hình hóa hóa lý.

Từ khóa

#Graphene #Germanium #Tính toán DFT #Mật độ trạng thái điện tử #Khuyết tật

Tài liệu tham khảo

Asadov, M.M., Mustafaeva, S.N., Guseinova, S.S., and Lukichev, V.F., Ab initio calculations of the electronic properties and the transport phenomena in graphene materials, Phys. Solid State, 2020, vol. 62, no. 11, pp. 2224–2231. https://doi.org/10.1134/S1063783420110037 Tsetseris, L., Wang, B., and Pantelides, S.T., Substitutional doping of graphene: The role of carbon divacancies, Phys. Rev. B, 2014, vol. 89, no. 3, p. 035411. https://doi.org/10.1103/PhysRevB.89.035411 Asadov, M.M., Guseinova, S.S., and Lukichev, V.F., Ab initio modeling of the electronic and energy structure and opening the band gap of a 4p-element-doped graphene monolayer, Russ. Microelectron., 2020, vol. 49, no. 5, pp. 314–323. https://doi.org/10.1134/S1063739720050030 Lukichev, V.F. and Amirov, I.I., Research and development in the field of micro and nanosystems, Istor. Nauki Tekh., 2018, no. 8, pp. 92–99. Asadov, M.M., Mustafaeva, S.N., Guseinova, S.S., Lukichev, V.F., and Tagiev, D.B., Ab initio modeling the influence of the location and properties of ordered vacancies on the magnetic state of a graphene monolayer, Phys. Solid State, 2021, vol. 63, no. 5, рр. 680–689.https://doi.org/10.1134/S1063783421050036 Akturk, E., Ataca, C., and Ciraci, S., Effects of silicon and germanium adsorbed on graphene, Appl. Phys. Lett., 2010, vol. 96, no. 12, p. 123112-3. https://doi.org/10.1063/1.3368704 Loghavia, M.M., Mohammadi-Maneshb, H., Eqraa, R., Ghasemia, A., and Babaieea, M., DFT study of adsorption of lithium on Si, Ge-doped divacancy defected graphene as anode material of Li-ion battery, Phys. Chem. Res., 2018, vol. 6, no. 4, pp. 871–878. https://doi.org/10.22036/pcr.2018.148943.1543 Gao, H., Zhou, J., Lu, M., Fa, W., and Chen, Y., First-principles study of the IVA group atoms adsorption on graphene, J. Appl. Phys., 2010, vol. 107, no. 11, p. 114311. https://doi.org/10.1063/1.3437640 Ould Në, M.L., Abbassi, A., Ez-Zahraouy, A.B., and El Kenz, A., Electronic optical, properties and widening band gap of graphene with Ge doping, Opt. Quant. Electron., 2017, vol. 49, no. 6, p. 218-13. https://doi.org/10.1007/s11082-017-1024-5 Jules, C., Moreac, A., Delhaye, G., Lépine, B., Tricot, S., Turban, P., Schieffer, P., and Le Breton, J.-C., Reduction of Schottky barrier height at graphene/germanium interface with surface passivation, Appl. Sci. MDPI, 2019, vol. 9, no. 23, p. 5014. https://doi.org/10.3390/app9235014 Hohenberg, P. and Kohn, W., Inhomogeneous electron gas, Phys. Rev. B, 1964, vol. 136, no. 3, pp. 864–871. https://doi.org/10.1103/PhysRev.136.B864 Koch, W.A. and Holthausen, M.C., Chemist’s Guide to Density Functional Theory, Weinheim: Wiley-VCH, 2001, 2nd ed. ISBN: 978-3-527-30372-4. Fulde, P., Electron Correlations in Molecules and Solids, Springer Series in Solid-State Sciences, Berlin: Springer, 2002. https://doi.org/10.1007/978-3-642-57809-0 Kohn, W. and Sham, L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 1965, vol. 140, no. 4, pp. 1133–1138. https://doi.org/10.1103/physrev.140.a1133 Kohn, W., Meir, Y., and Makarov, D.E., Van der Waals energies in density functional theory, Phys. Rev. Lett., 1998, vol. 80, no. 19, pp. 4153–4156. https://doi.org/10.1103/PhysRevLett.80.4153 Parr, R.G. and Yang, W., Density-Functional Theory of Atoms and Molecules, New York: Oxford Univ. Press, 1989. ISBN: 9780195092769. Jones, R.O. and Gunnarsson, O., The density functional formalism, its applications and prospects, Rev. Mod. Phys., 1989, vol. 61, no. 3, pp. 689–746. https://doi.org/10.1103/RevModPhys.61.689 Ernzerhof, M., Perdew, J.P., and Burke, K., Density functionals: Where do they come from, why do they work?, in Density Functional Theory I, Vol. 180 of Topics in Current Chemistry, Nalewajski, R.F., Ed., Berlin: Springer, 1996. https://doi.org/10.1007/3-540-61091-X_1 Zupan, A., Burke, K., Ernzerhof, M., and Perdew, J.P., Distributions and averages of electron density parameters: explaining the effects of gradient corrections, J. Chem. Phys., 1997, vol. 106, no. 24, pp. 10184–10193. https://doi.org/10.1063/1.474101 Perdew, J.P. and Zunger, A., Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B, 1981, vol. 23, no. 10, pp. 5048–5079. https://doi.org/10.1103/physrevb.23.5048 Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, no. 18, pp. 3865–3868. https://doi.org/10.1103/physrevlett.77.3865 Yengejeh, S.I., Kazemi, S.A., and Öchsner, A.A., Primer on the Geometry of Carbon Nanotubes and Their Modifications, Cham: Springer Int., 2015. https://doi.org/10.1007/978-3-319-14986-8_1 Mulliken, R.S., Electronic population analysis on LCAOMO molecular wave functions, J. Chem. Phys., 1955, vol. 23, no. 10, pp. 1833–1840. https://doi.org/10.1063/1.1740588 Hamann, D., Schlüter, M., and Chiang, C., Norm-conserving pseudopotentials, Phys. Rev. Lett., 1979, vol. 43, no. 20, pp. 1494–1497. https://doi.org/10.1103/PhysRevLett.43.1494 Kleinman, L. and Bylander, D.M., Efficacious form for model pseudopotentials, Phys. Rev. Lett., 1982, vol. 48, no. 20, pp. 1425–1428. https://doi.org/10.1103/PhysRevLett.48.1425 Pickett, W.E., Pseudopotential methods in condensed matter applications, Comput. Phys. Rep., 1989, vol. 9, no. 3, pp. 115–197. https://doi.org/10.1016/0167-7977(89)90002-6 Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 1990, vol. 41, no. 11, pp. 7892–7895. https://doi.org/10.1103/PhysRevB.41.7892 Ali, M., Pi, X., Liu, Y., and Yang, D., Electronic and magnetic properties of graphene, silicene and germanenewithvarying vacancy concentration, AIP Adv., 2017, vol. 7, no. 4, pp. 045308-1–11. https://doi.org/10.1063/1.4980836 Edwards, D.M. and Katsnelson, M.I., High-temperature ferromagnetism of Sp electrons in narrow impurity bands: application to CaB6, J. Phys.: Condens. Matter, 2006, vol. 18, no. 31, pp. 7209–7225. https://doi.org/10.1088/0953-8984/18/31/016 Schlick, T., Molecular Modeling and Simulation, New York: Springer Science, 2002. ISBN 978-1-4757-5893-1. https://doi.org/10.1007/978-0-387-22464-0 El-Barbary, A.A., Telling, R.H., Ewels, C.P., Heggie, M.I., and Briddon, P.R., Structure and energetics of the vacancy in graphite, Phys. Rev. B, 2003, vol. 68, no. 14, pp. 144107-1–11. https://doi.org/10.1103/PhysRevB.68.144107 Huang, B., Li, Z.Y., Liu, Z.R., Zhou, G., Hao, S.G., Wu, J., Gu, B.-L., and Duan, W., Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor, J. Phys. Chem. C, 2008, vol. 112, pp. 13442–13446. https://doi.org/10.1021/jp8021024 Zhang, Y.-H., Chen, Y.-B., Zhou, K.-G., Liu, C.-H., Zeng, J., Zhang, H.-L., and Peng, Y., Improving gas sensing properties of graphene by introducing dopants and defects: A first-principles study, Nanotecnology, 2009, vol. 20, no. 18, p. 185504. https://doi.org/10.1088/0957-4484/20/18/185504 Jaguar 7.9, User Manual, New York: Schrödinger, 2012. Israelchvili, J.N., Intermolecular and Surface Forces, Amsterdam: Academic, Elsevier, 2011, 3rd ed. Gao, H., Zhou, J., Lu, M., Fa, W., and Chen, Y., First-principles study of the IVA group atoms adsorption on graphene, J. Appl. Phys., 2010, vol. 107, no. 11, pp. 114311-1–6. https://doi.org/10.1063/1.3437640 Rafique, M., Yong, S., Ali, I., and Ahmed, I., Germanium atom substitution in monolayer graphene: a first-principles study, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 422, p. 012010. https://doi.org/10.1088/1757-899X/422/1/012010 Chen, D.M., Shenai, P.M., and Zhao, Y., Tight binding description on band gap opening of pyrenedispersed graphene, Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 1515–1520. https://doi.org/10.1039/C0CP00909A Asadov, M.M., Mustafayeva, S.N., Huseynova, S.S., Lukichev, V.F., Tagiev, D.B. Simulation of the structural and energy characteristics of atoms in a 2D GaS crystal with point defects, Phys. Solid State, 2022, vol. 64, no. 1, pp. 46–59.https://doi.org/10.21883/FTT.2022.01.51830.182 Mustafayeva, S.N., Asadov, M.M., Huseynova, S.S., Dzhabarov A.I., Lukichev V.F. Electronic, dielectric properties and charge transfer in a TlGaS2 : Nd3+ single crystal at direct and alternating current, Phys. Solid State, 2022, vol. 64, no 4, pp. 428–436. Trushin, Yu.V., Fizicheskie osnovy materialovedeniya (Physical Principles of Material Science), St. Petersburg: Akad. Univ., 2015, 2nd ed. ISBN 978-5-9064-3304-642. Zakharchenko, K.V., Fasolino, A., Los, J.H., and Katsnelson, M.I., Melting of graphene: from two to one dimension, J. Phys.: Condens. Matter, 2011, vol. 23, no. 20, p. 202202. https://doi.org/10.1088/0953-8984/23/20/202202 Novikov, I.I., Defekty kristallicheskogo stroeniya metallov (Defects of Crystal Structure of Metals), Moscow: Metallurgiya, 1983. Zhao, L., Najafabadi, R., and Srolovitz, D.J., Finite temperature vacancy formation thermodynamics: local harmonic and quasiharmonic studies, Model. Simul. Mater. Sci. Eng., 1993, vol. 1, no. 4, pp. 539–551. https://doi.org/10.1088/0965-0393/1/4/015