DEMoS: an Italian emotional speech corpus

Springer Science and Business Media LLC - Tập 54 - Trang 341-383 - 2019
Emilia Parada-Cabaleiro1, Giovanni Costantini2, Anton Batliner1, Maximilian Schmitt1, Björn W. Schuller1
1ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany
2Department of Electronic Engineering, University of Rome “Tor Vergata”, Rome, Italy

Tóm tắt

We present DEMoS (Database of Elicited Mood in Speech), a new, large database with Italian emotional speech: 68 speakers, some 9 k speech samples. As Italian is under-represented in speech emotion research, for a comparison with the state-of-the-art, we model the ‘big 6 emotions’ and guilt. Besides making available this database for research, our contribution is three-fold: First, we employ a variety of mood induction procedures, whose combinations are especially tailored for specific emotions. Second, we use combinations of selection procedures such as an alexithymia test and self- and external assessment, obtaining 1,5 k (proto-) typical samples; these were used in a perception test (86 native Italian subjects, categorical identification and dimensional rating). Third, machine learning techniques—based on standardised brute-forced openSMILE ComParE features and support vector machine classifiers—were applied to assess how emotional typicality and sample size might impact machine learning efficiency. Our results are three-fold as well: First, we show that appropriate induction techniques ensure the collection of valid samples, whereas the type of self-assessment employed turned out not to be a meaningful measurement. Second, emotional typicality—which shows up in an acoustic analysis of prosodic main features—in contrast to sample size is not an essential feature for successfully training machine learning models. Third, the perceptual findings demonstrate that the confusion patterns mostly relate to cultural rules and to ambiguous emotions.

Tài liệu tham khảo

Amir, N., Ron, S., & Laor, N. (2000). Analysis of an emotional speech corpus in Hebrew based on objective criteria. In Proceedings of the ITRW, ISCA, Newcastle, UK (pp. 29–33).

Baiocco, R., Giannini, A. M., & Laghi, F. (2005). SAR–Scala Alessitimica Romana. Valutazione delle capacità di riconoscere, esprimere e verbalizzare le emozioni. Trento: Erickson.

Bänziger, T., Pirker, H., & Scherer, K. (2006). GEMEP-GEneva multimodal emotion portrayals: A corpus for the study of multimodal emotional expressions. In Proceedings of LREC, ELRA, Genova, Italy (pp. 15–19).

Batliner, A., Fischer, K., Huber, R., Spilker, J., & Nöth, E. (2000). Desperately seeking emotions or: Actors, wizards, and human beings. In Proceedings of ITRW, ISCA (pp. 195–200).

Chiţu, A. G., van Vulpen, M., Takapoui, P., & Rothkrantz, L. J. M. (2008). Building a Dutch multimodal corpus for emotion recognition. In Workshop on Corpora for Research on Emotion and Affect (pp. 53–56). Marrakesh, Morocco: LREC.

Ciceri, M. R., & Anolli, L. M. (2000). La voce delle emozioni: Verso una semiosi della comunicazione vocale non-verbale delle emozioni. Milan: Franco Angeli.

Douglas-Cowie, E., Cox, C., Martin, J.-C., Devillers, L., Cowie, R., Sneddon, I., et al. (2011). Data and databases. In P. Petta, C. Pelachaud, & R. Cowie (Eds.), Emotion-oriented systems: The HUMAINE handbook (pp. 163–284). Berlin: Springer.

Eyben, F., Wöllmer, M., & Schuller, B. (2010). Opensmile: the Munich versatile and fast open-source audio feature extractor. In Proceedings of ACM Multimedia, ACM, Florence, Italy (pp. 1459–1462).

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). Liblinear: A library for large linear classification. Journal of Machine Learning Research, 9, 1871–1874.

Fischer, A. H. (1993). Sex differences in emotionality: Fact or stereotype? Feminism and Psychology, 3, 303–318.

Husain, G., Thompson, W. F., & Schellenberg, E. G. (2002). Effects of musical tempo and mode on arousal, mood, and spatial abilities. Music Perception: An Interdisciplinary Journal, 20(2), 151–171.

Johnstone, T., & Scherer, K. R. (1999). The effects of emotions on voice quality. In Proceedings of ICPhS, UCLA, San Francisco, CA (pp. 2029–2032).

Klasmeyer, G., Johnstone, T., Bänziger, T., Sappok, C., & Scherer, K. R. (2000). Emotional voice variability in speaker verification. In Proceedings of ITRW, ISCA, Newcastle, UK (pp. 213–218).

Plutchik, R. (1991). The emotions. Lanham, MD: University Press of America.

Rosch, E. H. (1973). Natural categories. Cognitive Psychology, 4(3), 328–350.

Scherer, K. R., & Ceschi, G. (1997). Lost luggage: A field study of emotion-antecedent appraisal. Motivation and Emotion, 21(3), 211–235.

Schröder, M. (2004). Speech and emotion research: An overview of research frameworks and a dimensional approach to emotional speech synthesis. PhD thesis, Saarland University.

Schuller, B., Steidl, S., Batliner, A., Marschik, P. B., Baumeister, H., Dong, F., Hantke, S., Pokorny, F., Rathner, E.-M., Bartl-Pokorny, K. D., Einspieler, C., Zhang, D., Baird, A., Amiriparian, S., Qian, K., Ren, Z., Schmitt, M., Tzirakis, P., & Zafeiriou, S. (2018). The Interspeech 2018 computational paralinguistics challenge: Atypical and self-assessed affect, crying and heart beats. In Proceedings of Interspeech, ISCA, Hyderabad, India (pp. 122–126).

Sobin, C., & Alpert, M. (1999). Emotion in speech: The acoustic attributes of fear, anger, sadness, and joy. Journal of Psycholinguistic Research, 28(4), 347–365.

Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: Context, process, and purpose. The American Statistician, 70, 129–133.