Cyclodiene Insecticide Resistance: From Molecular to Population Genetics

Annual Review of Entomology - Tập 45 Số 1 - Trang 449-466 - 2000
Richard H. ffrench‐Constant1,2, Nicola M. Anthony3,2, Kate Aronstein3,2, Thomas A. Rocheleau3,2, Geoff Stilwell3,2
1Department of Biology and Biochemistry, University of Bath, United Kingdom. [email protected]
2Department of Entomology, University of Wisconsin-Madison, Wisconsin, 53706,
3Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, United Kingdom

Tóm tắt

▪ Abstract  This review follows progress in the analysis of cyclodiene insecticide resistance from the initial isolation of the mutant, through cloning of the resistance gene, to an examination of the distribution of resistance alleles in natural populations. Emphasis is given to the use of a resistant Drosophila mutant as an entry point to cloning the associated γ-aminobutyric acid (GABA) receptor subunit gene, Resistance to dieldrin. Resistance is associated with replacements of a single amino acid (alanine302) in the chloride ion channel pore of the protein. Replacements of alanine302 not only directly affect the drug binding site but also allosterically destabilize the drug preferred conformation of the receptor. Resistance is thus conferred by a unique dual mechanism associated with alanine302, which is the only residue replaced in a wide range of different resistant insects. The underlying mutations appear either to have arisen once, or multiply, depending on the population biology of the pest insect. Although resistance frequencies decline in the absence of selection, resistance alleles can persist at relatively high frequency and may cause problems for compounds to which cross-resistance is observed, such as the novel fipronils.

Từ khóa


Tài liệu tham khảo

ffrench-Constant RH, Park Y, Feyereisen R. 1998. Molecular biology of insecticide resistance.InMolecular Biology of the Toxic Response,ed. A Puga, KB Wallace, pp. 533–51. Philadelphia: Taylor & Francis

Georghiou GP. 1969. The magnitude of the resistance problem. InPesticide Resistance: Strategies and Tactics for Management,ed. National Academy of Sciences, pp. 14–43. Washington, DC: Natl. Acad. Press

1965, J. Neurophysiol., 21, 589

10.1152/jn.1965.28.3.497

10.1073/pnas.56.4.1110

Eldefrawi ME, Abalis IM, Sherby SM, Eldefrawi AT. 1986. Neurotransmitter receptors of vertebrates and insects as targets for insecticides.InNeuropharmacology and Pesticide Action,ed. MG Ford, GG Lunt, RC Reay, PNR Usherwood, pp. 154–73, 319–91. Southampton, UK: Camelot

10.1093/jee/81.1.22

ffrench-Constant RH, Roush RT. 1992. Cloning of a locus associated with cyclodiene resistance inDrosophila: a model system in a model insect. InMolecular Mechanisms of Insecticide Resistance: Diversity Among Insects,ed. CA Mullin, JG Scott, pp. 90–98. Washington, DC: Am. Chem. Soc.

ffrench-Constant RH, Roush RT, Carino F. 1992.Drosophilaas a tool for investigating the molecular genetics of insecticide resistance.InMolecular Approaches to Pure and Applied Entomology,ed. MJ Whitten, JG Oakeshott, pp. 1–37. Berlin: Springer-Verlag

10.1093/jee/83.5.1733

10.1017/S0016672300028986

Leeb-Lundberg F, Olsen RW. 1980. Picrotoxin binding as a probe of the GABA postsynaptic membrane receptor-ionophore complex.InPsychopharmacology and Biochemistry of Neurotransmitter Receptors,ed. HI Yamamura, RW Olsen, E Usdin, pp. 593–606. New York: Elsevier

10.1016/0048-3575(83)90135-9

10.1584/jpestics.12.549

10.1002/ps.2780320408

10.1002/arch.940190103

10.1006/pest.1993.1038

10.1038/286814a0

10.1006/jmbi.1995.0547

10.1073/pnas.88.16.7209

10.1111/j.1471-4159.1993.tb03523.x

Stilwell GE, ffrench-Constant RH. 1998. Transcriptional analysis of theDrosophilaGABA receptor geneResistance to dieldrin. J. Neurobiol. 468–84

10.1016/0048-3575(92)90021-Q

10.1016/S0166-2236(97)01127-2

10.1111/j.1471-4159.1992.tb08475.x

10.1007/BF02331829

10.1002/(SICI)1096-9861(19970623)383:1<42::AID-CNE3>3.0.CO;2-L

10.1523/JNEUROSCI.13-11-04924.1993

10.1038/363449a0

10.1016/0014-5793(93)80409-N

10.1111/j.1365-2583.1994.tb00179.x

Shotkoski F, Zhang H-G, Jackson MB, ffrench-Constant RH. 1996. Stable expression of insect GABA receptors in insect cell lines: promoters for efficient expression ofDrosophilaand mosquitoRdlGABA receptors in stably transformed cell lines.FEBS Lett.380:257– 62

1994, J. Exp. Biol., 186, 235, 10.1242/jeb.186.1.235

10.1073/pnas.91.13.6069

1995, Mol. Pharmacol., 48, 835

10.1111/j.1476-5381.1996.tb16075.x

10.1111/j.1476-5381.1996.tb16720.x

1995, Pharmacol. Rev., 47, 181

10.1006/bbrc.1993.1648

10.1007/BF02214114

10.1073/pnas.90.5.1957

10.1126/science.2462281

10.1111/j.1365-2583.1993.tb00134.x

10.1016/0014-5793(93)81070-G

10.1006/pest.1995.1022

10.1017/S000748530003217X

10.1002/ps.2780410410

10.1016/0305-0491(94)90088-4

10.1007/s004380050882

10.1113/jphysiol.1994.sp020278

10.1113/jphysiol.1992.sp018998

ffrench-Constant RH, Zhang H-G, Jackson MB. 1995. Biophysical analysis of a single amino acid replacement in the resistance to dieldrin g-aminobutyric acid receptor: novel dual mechanism for cyclodiene insecticide resistance.InMolecular Action of Insecticides on Ion Channels,ed. JM Clark, pp. 192–204. San Diego, CA: Am. Chem. Soc.

ffrench-Constant RH, Pittendrigh B, Vaughan A. 1998. Why are there so few resistance-associated mutations in insecticide target genes?Philos. Trans. R. Soc. London Ser. B353:1685–93

10.1038/350151a0

ffrench-Constant RH, Anthony NM, Andreev D, Aronstein K. 1995. Single versus multiple origins of insecticide resistance: inferences from the cyclodiene resistance geneRdl.InMolecular Genetics and Evolution of Pesticide Resistance,ed. TM Brown, pp. 106–16. Big Sky, MT: Am. Chem. Soc.

10.1002/ps.2780430304

10.1111/j.1365-2915.1994.tb00394.x

10.1006/pest.1994.1001

10.1006/pest.1994.1024

10.1002/ps.2780430404

Kirkendall LR 1993. Ecology and evolution of biased sex ratios in bark and ambrosia beetles.InEvolution and Diversity of Sex Ratio in Insects and Mites,ed. DL Wrensch, MA Ebbert, pp. 235–345. New York: Chapman & Hall

10.1038/374506a0

Brun LO, Stuart J, Gaudichon V, Aronstein K, ffrench-Constant RH. 1995. Functional haplodiploidy: a novel mechanism for the spread of insecticide resistance in an important international insect pest.Proc. Natl. Acad. Sci. USA92:9861–65

10.1046/j.1365-2583.1998.72064.x

10.1126/science.8418497

10.1006/pest.1993.1005

10.1002/(SICI)1096-9063(199801)52:1<39::AID-PS669>3.3.CO;2-6

10.1007/PL00006583

10.1017/S0007485300051956

McKenzie JA. 1996.Ecological and Evolutionary Aspects of Insecticide Resistance. Austin, TX: Landes. 185 pp.

Colliot F, Kukorowski KA, Hawkins DW, Roberts DA. 1992. Fipronil: a new soil and foliar broad spectrum insecticide.InBrighton Crop Protection Conference: Pests and Diseases,pp. 29–34. Farnham, UK: Br. Crop Prot. Counc.

10.1006/pest.1993.1035

10.1111/j.1476-5381.1995.tb15896.x

Deng Y, Palmer CJ, Casida JE. 1993. House fly head GABA-gated chloride channel: four putative insecticide binding sites differentiated by [3H]EBOB and [35S]TPBS.Pestic. Biochem. Physiol.47:98–112

10.1006/pest.1995.1004

10.1016/0024-3205(95)00006-R

Trowell S, Zinkovsky E, Daly J, Russell R, ffrench-Constant RH. 1994. DNA probes for key insecticide resistance genes-1. Endosulfan resistance in AustralianH. armigera.InProc. 7th Aust. Cotton Conf.ed. D Swallow. Broadbeach: Aust. Cotton Growers Res. Dev. Assoc.

ffrench-Constant RH. 1999. Target site mediated insecticide resistance: What questions remain?Insect Biochem. Mol. Biol.29:397–403