Cyclodextrin chemistry. Selective modification of all primary hydroxyl groups of α‐ and β‐cyclodextrins

Helvetica Chimica Acta - Tập 61 Số 6 - Trang 2190-2218 - 1978
Joshua Boger1, Richard J. Corcoran1, Jean‐Maríe Lehn1,2
1Department of Chemistry, Harvard University Cambridge, Mass. 02138, U.S.A.
2Please send inquiries to this author at the following address: Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal F-67070 Strasbourg, France.

Tóm tắt

AbstractTwo efficient methods are described for the selective modification of all six primary hydroxyl groups of α‐cyclodextrin (α‐CD, 11). One, using an indirect strategy, involves protection of all 18 hydroxyl functions as benzoate esters, followed by selective deprotection of the six primary alcohol groups. The other, using a direct strategy, involves selective activation of the primary hydroxyl groups via a bulky triphenylphosphonium salt, which is then substituted by azide anion as the reaction proceeds. A number of modified α‐cyclodextrin derivatives have been prepared and fully characterized, among which are: the useful intermediate α‐cyclodextrin‐dodeca (2, 3) benzoate (3); hexakis (6‐amino‐6‐deoxy)‐α‐cyclodextrin hexahydrochloride (7); hexakis (6‐amino‐6‐deoxy)‐dodeca (2, 3)‐O‐methyl‐α‐cyclodextrin hexahydrochloride (9), hexa (6)‐O‐methyl‐α‐cyclodextrin (13). The direct substitution is shown to be even more efficient for β‐cyclodextrin (16), giving the heptakis (6‐azido‐6‐deoxy)‐β‐CD‐tetradeca (2, 3)acetate (17), while the indirect strategy fails. The compounds are characterized by extensive use of 13C‐ and 1H‐NMR. spectroscopy. The steric and statistical problems of selective polysubstitution reactions for the cyclodextrins are discussed, and possible reasons for the observed differences in reactivity between α‐ and β‐cyclodextrins are examined.The dodecabenzoate 3 presents a very marked solvent effect on physical properties (IR. and NMR. spectra, optical rotation); the effects observed may be ascribed to an unusually strong intramolecular network of hydrogen bonds which severely distorts the α‐cyclodextrin ring and lowers the symmetry from six‐fold to three‐fold.

Từ khóa


Tài liệu tham khảo

10.1007/978-3-642-49192-4

Cramer F., 1977, Nature., 54, 625

10.1016/S0360-0564(08)60302-8

10.1007/978-3-642-66842-5

10.1007/978-94-010-1837-1_17

10.1246/bcsj.50.1567

10.1021/ar50122a001

J. M.Lehn Pure appl. Chemistry in press (1978).

10.1007/BF01511661

10.1002/cber.19691020217

10.1246/bcsj.41.464

10.1016/S0040-4020(01)82286-9

10.1021/ja00431a007

10.1021/ja00989a028

10.1002/recl.19700890810

10.1021/jo00899a038

T.Hata I.YamamotoandM.Sekine Chemistry Letters 1975 977.

10.1016/S0065-2318(08)60280-2

10.1016/S0096-5332(08)60170-8

10.1016/S0096-5332(08)60099-5

J.Asselineau Bull. Soc. chim. France937(1955).

10.1002/hlca.19480310652

10.1016/S0096-5332(08)60027-2

10.1021/ja00881a025

10.1246/bcsj.44.2529

10.1002/star.19740260403

J. B.LeeandM. M.El Sawi Chemistry and Ind. 1960 839.

10.1139/v66-199

10.1021/jo00979a018

B.Castro Y.Chapleur B.GrossandC.Selve Tetrahedron Letters 1972 5001.

I.NakagawaandT.Hata Tetrahedron Letters 1975 1409.

T.Hata I.YamamotoandM.Sekine Chemistry Letters 1975 977.

B. J.HuntandW.Rigby Chemistry and Ind. 1967 1868.

R.Breslow H.KohnandB.Siegel Tetrahedron Letters 1976 1645.

10.1016/0045-2068(76)90008-0

10.1016/0040-4020(68)88030-5

10.1016/0045-2068(76)90018-3

10.1021/ja00818a042

10.1021/ja00833a038

K.Takeo K.HiroseandT.Kuge Chemistry Letters 1973 1233.

T.Usui N.Yamaoka K.Matsuda K.Tuzimura H.SugiyamaandS.Seto J. chem. Soc. Perking Transactions I 1973 2425.

Stothers J. B., 1972, Carbon‐13 NMR Spectroscopy, 458

Bretmaier E., 1974, 13C‐NMR Spectroscopy, 223

10.1021/ja00448a009

10.1271/bbb1961.34.1416

10.1016/S0040-4020(01)82892-1

Casu B., 1968, 217

A.Pinter Ph.D. Thesis Columbia University1973.

10.1021/ja01169a100

10.1016/S0096-5332(08)60209-X