Cycling-Induced Capacity Increase of Graphene Aerogel/ZnO Nanomembrane Composite Anode Fabricated by Atomic Layer Deposition

Nanoscale Research Letters - Tập 14 - Trang 1-7 - 2019
Dingrun Wang1, Yalan Li1, Yuting Zhao1, Qinglei Guo1, Siwei Yang2, Guqiao Ding2, YongFeng Mei1, Gaoshan Huang1
1Department of Materials Science, Fudan University, Shanghai, People’s Republic of China
2Center for Excellence in Superconducting Electronics (CENSE), State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and information Technology, Chinese Academy of Science, Shanghai, People’s Republic of China

Tóm tắt

Zinc oxide (ZnO) nanomembranes/graphene aerogel (GAZ) composites were successfully fabricated via atomic layer deposition (ALD). The composition of GAZ composites can be controlled by changing the number of ALD cycles. Experimental results demonstrated that the anode made from GAZ composite with ZnO nanomembrane of 100 ALD cycles exhibited highest specific capacity and best rate performance. A capacity increase of more than 2 times during the first 500 cycles was observed, and a highest capacity of 1200 mAh g−1 at current density of 1000 mA g−1 was observed after 500 cycles. On the basis of detailed electrochemical investigations, we ascribe the remarkable cycling-induced capacity increase to the alloying process accompanied by the formation of a polymer layer resulting from kinetically activated electrolyte degradation at low voltage regions.

Tài liệu tham khảo

Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367 Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262 Xu W, Wang JL, Ding F, Chen XL, Nasybutin E, Zhang YH, Zhang JG (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537 Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443 Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282 Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271 Huang XH, Xia XH, Yuan YF, Zhou F (2011) Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim Acta 56(14):4960–4965 Lu S, Wang H, Zhou J, Wu X, Qin W (2017) Atomic layer deposition of ZnO on carbon black as nanostructured anode materials for high-performance lithium-ion batteries. Nanoscale 9(3):1184–1192 Li X, Qiao L, Li D, Wang X, Xie W, He D (2013) Three-dimensional network structured a-Fe2O3 made from a stainless steel plate as a high-performance electrode for lithium ion batteries. J Mater Chem A 1:6400–6406 Wang P, Ding H, Bark T, Chen C (2007) Nanosized α-Fe2O3 and Li–Fe composite oxide electrodes for lithium-ion batteries. Electrochim Acta 52(24):6650–6655 Li Y, Tan B, Wu Y (2008) Mesoporous CO3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270 Lou X, Deng D, Lee J, Feng J, Archer LA (2008) Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater 20(2):258 Shi Y, Guo B, Corr SA, Shi Q, Hu Y, Heier KR, Chen L, Seshadri R, Stucky GD (2009) Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett 9(12):4215–4220 Xiao L, Wu D, Han S, Huang Y, Li S, He M, Zhang F, Feng X (2013) Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl Mater Inter 5(9):3764–3769 Wang R, Xu C, Sun J, Gao L (2015) Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: nucleation mechanism and lithium storage properties. Sci Rep 4:7171 Cho S, Jung J, Kim C, Kim I (2017) Rational design of 1-D Co3O4 nanofibers@low content graphene composite anode for high performance Li-ion batteries. Sci Rep 7:45015 Zhang J, Gu P, Xu J, Xue H, Pang H (2016) High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries. Nanoscale 8(44):18578–18595 Quartarone E, Dall'Asta V, Resmini A, Tealdi C, Tredici IG, Tamburini UA, Mustarelli P (2016) Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries. J Power Sources 320:314–321 Yu M, Wang A, Wang Y, Li C, Shi G (2014) An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition. Nanoscale 6(19):11419–11424 Zhang G, Hou S, Zhang H, Zeng W, Yan F, Li CC, Duan H (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv Mater 27(14):2400–2405 Zhao YT, Huang GS, Li YL, Edy R, Gao PB, Tang H, Bao ZH, Mei YF (2018) Three-dimensional carbon/ZnO nanomembrane foam as an anode for lithium-ion battery with long-life and high areal capacity. J Mater Chem A 6(16):7227–7235 Zhao YT, Huang GS, Wang DR, Ma Y, Fan ZY, Bao ZH, Mei YF (2018) Sandwiched porous C/ZnO/porous C nanosheet battery anodes with stable solid-electrolyte interphase for fast and long cycling. J Mater Chem A 6:22870–22878 Li YL, Zhao YT, Huang GS, Xu BR, Wang B, Pan RB, Men CL, Mei YF (2017) ZnO nanomembrane/expanded graphite composite synthesized by atomic layer deposition as binder-free anode for lithium ion batteries. ACS Appl Mater Inter 9(44):38522–38529 Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217):1246501–1246509 Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25(18):2554–2560 Garakani MA, Abouali S, Zhang B, Takagi CA, Xu Z, Huang J, Huang J, Kim J (2014) Cobalt carbonate/and cobalt oxide/graphene aerogel composite anodes for high performance Li-ion batteries. ACS Appl Mater Inter 6(21):18971–18980 Edy R, Huang GS, Zhao YT, Guo Y, Zhang J, Mei YF, Shi JJ (2017) Influence of reactive surface groups on the deposition of oxides thin film by atomic layer deposition. Surf Coat Technol 329:149–154 Edy R, Huang GS, Zhao YT, Zhang J, Mei YF, Shi JJ (2016) Atomic layer deposition of TiO2-nanomembrane-based photocatalysts with enhanced performance. AIP Adv 6(11):115113 Edy R, Zhao YT, Huang GS, Shi JJ, Zhang J, Solovev AA, Mei YF (2016) TiO2 nanosheets synthesized by atomic layer deposition for photocatalysis. Prog Nat Sci Mater Int 26(5):493–497 Pan SQ, Zhao YT, Huang GS, Wang J, Baunack S, Gemming T, Schmidt OG, Mei YF (2015) Highly photocatalytic TiO2 interconnected porous powder fabricated by sponge-templated atomic layer deposition. Nanotechnology 26(36):364001 Kim D, Kang H, Kim JM, Kim H (2011) The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD. Appl Surf Sci 257(8):3776–3779 Xie Q, Zhang X, Wu X, Wu H, Liu X, Yue G, Yang Y, Peng D (2014) Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries. Electrochim Acta 125:659–665 Chou S, Wang J, Wexler D, Konstantinov K, Zhong C, Liu H, Dou S (2010) High-surface-area a-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. J Mater Chem 20:2092–2098 Wu Z, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):3187–3194 Wang L, Yu Y, Chen PC, Zhang DW, Chen CH (2008) Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J Power Sources 183(2):717–723 Zhou J, Song H, Ma L, Chen X (2011) Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Adv 1(5):782–791 Adelhelm P, Hu Y, Antonietti M, Maier J, Smarsly BM (2009) Hollow Fe-containing carbon fibers with tubular tertiary structure: preparation and Li-storage properties. J Mater Chem 19(11):1616 Lee KT, Cho J (2011) Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 6(1):28–41 Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon JM (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149(5):627–634 Tu Z, Yang G, Song H, Wang C (2016) Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode. ACS Appl Mater Inter 9(1):439–446 Wang R, Xu C, Sun J, Liu Y, Gao L, Lin C (2013) Free-standing and binder-free lithium-ion electrodes based on robust layered assembly of graphene and Co3O4 nanosheets. Nanoscale 5(15):6960 Zou F, Hu X, Li Z, Qie L, Hu C, Zeng R, Jiang Y, Huang Y (2014) MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv Mater 26(38):6622–6628 Rui X, Tan H, Sim D, Liu W, Xu C, Hng HH, Yazami R, Lim TM, Yan Q (2013) Template-free synthesis of urchin-like Co3O4 hollow spheres with good lithium storage properties. J Power Sources 222:97–102 Tan C, Cao J, Khattak AM, Cai F, Jiang B, Yang G, Hu S (2014) High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries. J Power Sources 270:28–33 Meng J, Cao Y, Suo Y, Liu Y, Zhang J, Zheng X (2015) Facile fabrication of 3D SiO2@graphene aerogel composites as anode material for lithium ion batteries. Electrochim Acta 176:1001–1009 Wang X, Li X, Sun X, Li F, Liu Q, Wang Q, He D (2011) Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem 21(11):3571 Liu H, Shi L, Li D, Yu J, Zhang H, Ullah S, Yang B, Li C, Zhu C, Xu J (2018) Rational design of hierarchical ZnO@carbon nanoflower for high performance lithium ion battery anodes. J Power Sources 387:64–71 Do J, Weng C (2005) Preparation and characterization of CoO used as anodic material of lithium battery. J Power Sources 146(1–2):482–486 Wang X, Yang Z, Sun X, Li X, Wang D, Wang P, He D (2011) NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J Mater Chem 21(27):9988 Ponrouch A, Palacín MR (2012) Optimisation of performance through electrode formulation in conversion materials for lithium ion batteries: Co3O4 as a case example. J Power Sources 212:233–246