Curvature Relations and Affine Surface Area for a General Convex Body and its Polar

Daniel Hug1
1Mathematisches Institut, Albert-Ludwigs-Universität, Freiburg i. Br., Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. D. Aleksandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it (in Russian), Uchenye Zapiski Leningrad. Gos. Univ., Math. Ser. 6 (1939), 3–35.

V. Bangert, Analytische Eigenschaften konvexer Funktionen auf Riemannschen Mannigfaltigkeiten, J. reine angew. Math. 307/308 (1979), 309–324.

H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.

S. Glasauer and P. M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies III, Preprint (1995).

P. M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies I, Forum Mathematicum 5 (1993), 281–297.

D. Hug, Contributions to affine surface area, Preprint (1995).

D. Hug, Geometrische Maße in der affinen Konvexgeometrie, Dissertation, Freiburg, 1994.

F. J. Kaltenbach, Asymptotisches Verhalten zufälliger konvexer Polyeder, Dissertation, Freiburg, 1990.

D. Laugwitz, Differentialgeometrie in Vektorräumen, Vieweg, Braunschweig, 1965.

K. Leichtweiß, Zur Affinoberfläche konvexer Körper, Manuscripta Math. 56 (1986), 429–464.

An-Min Li, Udo Simon, and Guosong Zhao, Global Affine Differential Geometry of Hypersurfaces, Walter de Gruyter, Berlin, 1993.

E. Lutwak, The Brunn-Minkowski-Firey Theory II: Affine and Geominimal Surface Area, to appear in Advances in Math., Preprint (1995).

E. Lutwak, Extended affine surface area, Adv. Math. 85 (1991), 39–68.

V. Oliker and U. Simon, Affine Geometry and Polar Hypersurfaces, pp. 87-112, BI Verlag Mannheim (1992), B. Fuchssteiner & W. A. J. Luxemburg (eds): “Analysis and Geometry”.

E. Salkowski, Affine Differentialgeometrie, Walter de Gruyter & Co., Göschens Lehrbücherei, Band 22, 1934.

P. A. Schirokow and A. P. Schirokow, Affine Differentialgeometrie, Teubner Verlagsgesellschaft, Leipzig, 1962.

R. Schneider, Bestimmung konvexer Körper durch Krümmungsmaße, Comment. Math. Helvetici 54 (1979), 42–60.

R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge, 1993.

C. Schütt and E. Werner, The convex floating body, Math. Scand. 66 (1990), 275–290.