Tình trạng hiện tại và ý nghĩa của microRNAs trong chẩn đoán và điều trị ung thư buồng trứng

Journal of Ovarian Research - Tập 5 Số 1 - 2012
Mohd Saif Zaman1, Diane M. Maher1, Sheema Khan1, Meena Jaggi2,1, Subhash C. Chauhan2,1
1Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, USA
2Basic Biomedical Science Division, Sanford School of Medicine, The University of South Dakota, Sioux Falls, USA

Tóm tắt

Tóm tắt

Ung thư buồng trứng là loại ung thư phổ biến thứ năm ở phụ nữ và gây ra nhiều cái chết hơn bất kỳ loại ung thư sinh sản nào khác ở phụ nữ. Hiện tại, điều trị ung thư buồng trứng dựa trên sự kết hợp giữa phẫu thuật và hóa trị. Trong khi ung thư buồng trứng tái phát phản ứng với các liệu pháp hóa trị bổ sung, khoảng thời gian không tiến triển ngày càng ngắn lại sau mỗi chu kỳ, khi mà sự kháng hóa trị gia tăng cho đến khi bệnh trở thành không thể chữa khỏi. Do đó, có một nhu cầu mạnh mẽ về các chỉ số dự đoán và tiên đoán để giúp tối ưu hóa và cá nhân hóa quá trình điều trị nhằm cải thiện kết quả của ung thư buồng trứng. Một số lượng ngày càng tăng các nghiên cứu chỉ ra vai trò thiết yếu của microRNAs trong sự tiến triển và kháng hóa trị của ung thư buồng trứng. MicroRNAs (miRNAs) là các RNA không mã hóa nội sinh nhỏ (~22bp) thường bị rối loạn trong ung thư. Thông thường, miRNAs tham gia vào các quá trình sinh học quan trọng, bao gồm sự phát triển, biệt hóa, chết tế bào và sự phát triển. Hai nhóm miRNAs, miR-200 và let-7, thường bị rối loạn trong ung thư buồng trứng và đã được liên kết với tiên lượng xấu. Cả hai đều có liên quan đến việc điều hòa quá trình chuyển đổi từ biểu mô sang trung mô, một quá trình tế bào liên quan đến tính hung hãn của khối u, sự xâm lấn của khối u và kháng hóa trị. Hơn nữa, miRNAs cũng có thể có tác động đến việc cải thiện chẩn đoán ung thư; ví dụ, họ miR-200, họ let-7, miR-21 và miR-214 có thể hữu ích trong các xét nghiệm chẩn đoán để giúp phát hiện ung thư buồng trứng ở giai đoạn sớm. Ngoài ra, việc sử dụng các O-modified antagomirs nhắm nhiều mục tiêu (MTG-AMO) để ức chế các miRNAs gây ung thư và liệu pháp thay thế miRNA cho các miRNAs ức chế khối u là những công cụ thiết yếu cho liệu pháp ung thư dựa trên miRNA. Trong bài tổng quan này, chúng tôi mô tả trạng thái hiện tại của vai trò mà miRNAs đảm nhận trong ung thư buồng trứng và tập trung vào khả năng của các liệu pháp dựa trên microRNA và việc sử dụng microRNAs như là các công cụ chẩn đoán.

Từ khóa


Tài liệu tham khảo

Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin 2012,62(1):10–29. 10.3322/caac.20138

Wright JD, Shah M, Mathew L, Burke WM, Culhane J, Goldman N, Schiff PB, Herzog TJ: Fertility preservation in young women with epithelial ovarian cancer. Cancer 2009,115(18):4118–4126. 10.1002/cncr.24461

Fung-Kee-Fung M, Oliver T, Elit L, Oza A, Hirte HW, Bryson P: Optimal chemotherapy treatment for women with recurrent ovarian cancer. Curr Oncol 2007,14(5):195–208. 10.3747/co.2007.148

Takano M, Kikuchi Y, Yaegashi N, Kuzuya K, Ueki M, Tsuda H, Suzuki M, Kigawa J, Takeuchi S, Moriya T, et al.: Clear cell carcinoma of the ovary: a retrospective multicentre experience of 254 patients with complete surgical staging. Br J Cancer 2006,94(10):1369–1374. 10.1038/sj.bjc.6603116

du Bois A, Luck HJ, Meier W, Adams HP, Mobus V, Costa S, Bauknecht T, Richter B, Warm M, Schroder W, et al.: A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst 2003,95(17):1320–1329. 10.1093/jnci/djg036

Shih Ie M, Kurman RJ: Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol 2004,164(5):1511–1518. 10.1016/S0002-9440(10)63708-X

Morgan RJ, Alvarez RD, Armstrong DK, Burger RA, Castells M, Chen LM, Copeland L, Crispens MA, Gershenson D, Gray H, et al.: Ovarian Cancer, Version 3.2012. J Natl Compr Canc Netw 2012,10(11):1339–1349.

Vergote I, du Bois A, Amant F, Heitz F, Leunen K, Harter P: Neoadjuvant chemotherapy in advanced ovarian cancer: On what do we agree and disagree. Gynecol Oncol 2012. Sep 21 (Epub ahead of print).

Gonzalez-Martin A, Chiva L: Emerging Concerns When Evidence-Based Medicine Is Translated into Real Life: The Case of Neoadjuvant Chemotherapy in Ovarian Cancer. Curr Oncol Rep 2012. Oct 9 (epub ahead of print).

Cannistra SA: Cancer of the ovary. N Engl J Med 2004,351(24):2519–2529. 10.1056/NEJMra041842

Rabik CA, Dolan ME: Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 2007,33(1):9–23. 10.1016/j.ctrv.2006.09.006

Fraser M, Bai T, Tsang BK: Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer 2008,122(3):534–546. 10.1002/ijc.23086

Behbakht K, Qamar L, Aldridge CS, Coletta RD, Davidson SA, Thorburn A, Ford HL: Six1 overexpression in ovarian carcinoma causes resistance to TRAIL-mediated apoptosis and is associated with poor survival. Cancer Res 2007,67(7):3036–3042. 10.1158/0008-5472.CAN-06-3755

Duan Z, Foster R, Bell DA, Mahoney J, Wolak K, Vaidya A, Hampel C, Lee H, Seiden MV: Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin Cancer Res 2006,12(17):5055–5063. 10.1158/1078-0432.CCR-06-0861

Gan Y, Wientjes MG, Au JL: Expression of basic fibroblast growth factor correlates with resistance to paclitaxel in human patient tumors. Pharm Res 2006,23(6):1324–1331. 10.1007/s11095-006-0136-6

Ferlini C, Raspaglio G, Cicchillitti L, Mozzetti S, Prislei S, Bartollino S, Scambia G: Looking at drug resistance mechanisms for microtubule interacting drugs: does TUBB3 work? Curr Cancer Drug Targets 2007,7(8):704–712. 10.2174/156800907783220453

Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004,116(2):281–297. 10.1016/S0092-8674(04)00045-5

Bartels CL, Tsongalis GJ: MicroRNAs: novel biomarkers for human cancer. Clin Chem 2009,55(4):623–631. 10.1373/clinchem.2008.112805

Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G, Ferlini C: Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol 2008,111(3):478–486. 10.1016/j.ygyno.2008.08.017

Marchini S, Fruscio R, Clivio L, Beltrame L, Porcu L, Nerini IF, Cavalieri D, Chiorino G, Cattoretti G, Mangioni C, et al.: Resistance to platinum-based chemotherapy is associated with epithelial to mesenchymal transition in epithelial ovarian cancer. Eur J Cancer 2012. Aug 13, (Epub ahead of print).

Ye G, Fu G, Cui S, Zhao S, Bernaudo S, Bai Y, Ding Y, Zhang Y, Yang BB, Peng C: MicroRNA 376c enhances ovarian cancer cell survival by targeting activin receptor-like kinase 7: implications for chemoresistance. J Cell Sci 2011,124(Pt 3):359–368.

Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993,75(5):843–854. 10.1016/0092-8674(93)90529-Y

Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ: The deep evolution of metazoan microRNAs. Evol Dev 2009,11(1):50–68. 10.1111/j.1525-142X.2008.00302.x

Ambros V: The functions of animal microRNAs. Nature 2004,431(7006):350–355. 10.1038/nature02871

Cai X, Hagedorn CH, Cullen BR: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004,10(12):1957–1966. 10.1261/rna.7135204

Kim YK, Kim VN: Processing of intronic microRNAs. EMBO J 2007,26(3):775–783. 10.1038/sj.emboj.7601512

Pratt AJ, MacRae IJ: The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 2009,284(27):17897–17901. 10.1074/jbc.R900012200

Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, et al.: Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 2009,35(6):868–880. 10.1016/j.molcel.2009.08.004

Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007,27(1):91–105. 10.1016/j.molcel.2007.06.017

Gu S, Jin L, Zhang F, Sarnow P, Kay MA: Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. Nat Struct Mol Biol 2009,16(2):144–150. 10.1038/nsmb.1552

Vasudevan S, Tong Y, Steitz JA: Cell-cycle control of microRNA-mediated translation regulation. Cell Cycle 2008,7(11):1545–1549. 10.4161/cc.7.11.6018

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell 2003,115(7):787–798. 10.1016/S0092-8674(03)01018-3

Flynt AS, Lai EC: Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 2008,9(11):831–842. 10.1038/nrg2455

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al.: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002,99(24):15524–15529. 10.1073/pnas.242606799

Zhang W, Dahlberg JE, Tam W: MicroRNAs in tumorigenesis: a primer. Am J Pathol 2007,171(3):728–738. 10.2353/ajpath.2007.070070

Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, et al.: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005,353(17):1793–1801. 10.1056/NEJMoa050995

Calin GA, Croce CM: Chromosomal rearrangements and microRNAs: a new cancer link with clinical implications. J Clin Invest 2007,117(8):2059–2066. 10.1172/JCI32577

Tagawa H, Seto M: A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 2005,19(11):2013–2016. 10.1038/sj.leu.2403942

Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, et al.: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004,101(9):2999–3004. 10.1073/pnas.0307323101

Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K, Li C, O'Brien-Jenkins A, Katsaros D, Weber BL, et al.: miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 2008, 7: 255–264. 10.4161/cbt.7.2.5297

Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006,9(6):435–443. 10.1016/j.ccr.2006.04.020

Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, et al.: MicroRNA signatures in human ovarian cancer. Cancer Res 2007,67(18):8699–8707. 10.1158/0008-5472.CAN-07-1936

Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T: Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007,39(5):673–677. 10.1038/ng2003

He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al.: A microRNA component of the p53 tumour suppressor network. Nature 2007,447(7148):1130–1134. 10.1038/nature05939

Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, Liu CG, Giannakakis A, Alexiou P, Hasegawa K, et al.: Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A 2008,105(19):7004–7009. 10.1073/pnas.0801615105

Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, et al.: microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 2006,103(24):9136–9141. 10.1073/pnas.0508889103

Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S: MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 2008,14(9):2690–2695. 10.1158/1078-0432.CCR-07-1731

Dahiya N, Sherman-Baust CA, Wang TL, Davidson B, Shih Ie M, Zhang Y, Becker KG, Morin PJ, Wood W: MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One 2008,3(6):e2436. 10.1371/journal.pone.0002436

Wyman SK, Parkin RK, Mitchell PS, Fritz BR, O'Briant K, Godwin AK, Urban N, Drescher CW, Knudsen BS, Tewari M: Repertoire of microRNAs in epithelial ovarian cancer as determined by next generation sequencing of small RNA cDNA libraries. PLoS One 2009,4(4):e5311. 10.1371/journal.pone.0005311

Lee CH, Subramanian S, Beck AH, Espinosa I, Senz J, Zhu SX, Huntsman D, van de Rijn M, Gilks CB: MicroRNA profiling of BRCA1/2 mutation-carrying and non-mutation-carrying high-grade serous carcinomas of ovary. PLoS One 2009,4(10):e7314. 10.1371/journal.pone.0007314

Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, et al.: MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 2008,68(2):425–433. 10.1158/0008-5472.CAN-07-2488

Korpal M, Lee ES, Hu G, Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008,283(22):14910–14914. 10.1074/jbc.C800074200

Huber MA, Kraut N, Beug H: Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005,17(5):548–558. 10.1016/j.ceb.2005.08.001

Park SM, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008,22(7):894–907. 10.1101/gad.1640608

Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008,10(5):593–601. 10.1038/ncb1722

Gregory PA, Bracken CP, Bert AG, Goodall GJ: MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 2008,7(20):3112–3118. 10.4161/cc.7.20.6851

Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR, Sarkar FH: miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells 2009,27(8):1712–1721. 10.1002/stem.101

Imai T, Horiuchi A, Shiozawa T, Osada R, Kikuchi N, Ohira S, Oka K, Konishi I: Elevated expression of E-cadherin and alpha-, beta-, and gamma-catenins in metastatic lesions compared with primary epithelial ovarian carcinomas. Hum Pathol 2004,35(12):1469–1476. 10.1016/j.humpath.2004.09.014

Leskela S, Leandro-Garcia LJ, Mendiola M, Barriuso J, Inglada-Perez L, Munoz I, Martinez-Delgado B, Redondo A, de Santiago J, Robledo M, et al.: The miR-200 family controls beta-tubulin III expression and is associated with paclitaxel-based treatment response and progression-free survival in ovarian cancer patients. Endocr Relat Cancer 2011,18(1):85–95.

Rosell R, Scagliotti G, Danenberg KD, Lord RV, Bepler G, Novello S, Cooc J, Crino L, Sanchez JJ, Taron M, et al.: Transcripts in pretreatment biopsies from a three-arm randomized trial in metastatic non-small-cell lung cancer. Oncogene 2003,22(23):3548–3553. 10.1038/sj.onc.1206419

Seve P, Mackey J, Isaac S, Tredan O, Souquet PJ, Perol M, Lai R, Voloch A, Dumontet C: Class III beta-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol Cancer Ther 2005,4(12):2001–2007. 10.1158/1535-7163.MCT-05-0244

Seve P, Dumontet C: Is class III beta-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol 2008,9(2):168–175. 10.1016/S1470-2045(08)70029-9

Koh Y, Kim TM, Jeon YK, Kwon TK, Hah JH, Lee SH, Kim DW, Wu HG, Rhee CS, Sung MW, et al.: Class III beta-tubulin, but not ERCC1, is a strong predictive and prognostic marker in locally advanced head and neck squamous cell carcinoma. Ann Oncol 2009,20(8):1414–1419. 10.1093/annonc/mdp002

Ferrandina G, Zannoni GF, Martinelli E, Paglia A, Gallotta V, Mozzetti S, Scambia G, Ferlini C: Class III beta-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients. Clin Cancer Res 2006,12(9):2774–2779. 10.1158/1078-0432.CCR-05-2715

Kavallaris M, Kuo DY, Burkhart CA, Regl DL, Norris MD, Haber M, Horwitz SB: Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 1997,100(5):1282–1293. 10.1172/JCI119642

Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prislei S, Gallo D, Martinelli E, Ranelletti FO, Ferrandina G, et al.: Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 2005,11(1):298–305.

Umezu T, Shibata K, Kajiyama H, Terauchi M, Ino K, Nawa A, Kikkawa F: Taxol resistance among the different histological subtypes of ovarian cancer may be associated with the expression of class III beta-tubulin. Int J Gynecol Pathol 2008,27(2):207–212.

Roush S, Slack FJ: The let-7 family of microRNAs. Trends Cell Biol 2008,18(10):505–516. 10.1016/j.tcb.2008.07.007

Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, et al.: Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000,408(6808):86–89. 10.1038/35040556

Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, et al.: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004,64(11):3753–3756. 10.1158/0008-5472.CAN-04-0637

Yang N, Kaur S, Volinia S, Greshock J, Lassus H, Hasegawa K, Liang S, Leminen A, Deng S, Smith L, et al.: MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res 2008,68(24):10307–10314. 10.1158/0008-5472.CAN-08-1954

Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ: RAS is regulated by the let-7 microRNA family. Cell 2005,120(5):635–647. 10.1016/j.cell.2005.01.014

Bussing I, Slack FJ, Grosshans H: let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 2008,14(9):400–409. 10.1016/j.molmed.2008.07.001

Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D, Wilson M, Wang X, Shelton J, Shingara J, et al.: The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007,67(16):7713–7722. 10.1158/0008-5472.CAN-07-1083

Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M: MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 2008,18(5):549–557. 10.1038/cr.2008.45

Wang Y, Hu X, Greshock J, Shen L, Yang X, Shao Z, Liang S, Tanyi JL, Sood AK, Zhang L: Genomic DNA Copy-Number Alterations of the let-7 Family in Human Cancers. PLoS One 2012,7(9):e44399. 10.1371/journal.pone.0044399

Chen GQ, Zhao ZW, Zhou HY, Liu YJ, Yang HJ: Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol 2010,27(2):406–415. 10.1007/s12032-009-9225-9

Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, et al.: MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 2008,7(1):1–9. 10.1158/1535-7163.MCT-07-0573

Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M, Gillespie E, Slack FJ: MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 2007,67(23):11111–11116. 10.1158/0008-5472.CAN-07-2858

Boyerinas B, Park SM, Murmann AE, Gwin K, Montag AG, Zillhardt M, Hua YJ, Lengyel E, Peter ME: Let-7 modulates acquired resistance of ovarian cancer to Taxanes via IMP-1-mediated stabilization of multidrug resistance 1. Int J Cancer 2012,130(8):1787–1797. 10.1002/ijc.26190

Lu L, Schwartz P, Scarampi L, Rutherford T, Canuto EM, Yu H, Katsaros D: MicroRNA let-7a: a potential marker for selection of paclitaxel in ovarian cancer management. Gynecol Oncol 2011,122(2):366–371. 10.1016/j.ygyno.2011.04.033

Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK, Kamat AA, Sood AK, Ellenson LH, Hermeking H, et al.: Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 2010,16(4):1119–1128. 10.1158/1078-0432.CCR-09-2642

Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG, Olokpa E, Itamochi H, Ueno NT, Hawkins SM, et al.: A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol 2010,24(2):447–463. 10.1210/me.2009-0295

Peng DX, Luo M, Qiu LW, He YL, Wang XF: Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep 2012,27(4):1238–1244.

Mabuchi S, Kawase C, Altomare DA, Morishige K, Sawada K, Hayashi M, Tsujimoto M, Yamoto M, Klein-Szanto AJ, Schilder RJ, et al.: mTOR is a promising therapeutic target both in cisplatin-sensitive and cisplatin-resistant clear cell carcinoma of the ovary. Clin Cancer Res 2009,15(17):5404–5413. 10.1158/1078-0432.CCR-09-0365

Creighton CJ, Fountain MD, Yu Z, Nagaraja AK, Zhu H, Khan M, Olokpa E, Zariff A, Gunaratne PH, Matzuk MM, et al.: Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res 2010,70(5):1906–1915. 10.1158/0008-5472.CAN-09-3875

Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, et al.: Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 2010,11(2):136–146. 10.1016/S1470-2045(09)70343-2

Penna E, Orso F, Cimino D, Tenaglia E, Lembo A, Quaglino E, Poliseno L, Haimovic A, Osella-Abate S, De Pitta C, et al.: microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J 2011,30(10):1990–2007. 10.1038/emboj.2011.102

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, et al.: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006,103(7):2257–2261. 10.1073/pnas.0510565103

Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis IO, et al.: MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 2007,8(10):R214. 10.1186/gb-2007-8-10-r214

Qiang R, Wang F, Shi LY, Liu M, Chen S, Wan HY, Li YX, Li X, Gao SY, Sun BC, et al.: Plexin-B1 is a target of miR-214 in cervical cancer and promotes the growth and invasion of HeLa cells. Int J Biochem Cell Biol 2011,43(4):632–641. 10.1016/j.biocel.2011.01.002

Testa JR, Bellacosa A: AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 2001,98(20):10983–10985. 10.1073/pnas.211430998

Yin G, Chen R, Alvero AB, Fu HH, Holmberg J, Glackin C, Rutherford T, Mor G: TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214. Oncogene 2010,29(24):3545–3553. 10.1038/onc.2010.111

Lee MS, Lowe GN, Strong DD, Wergedal JE, Glackin CA: TWIST, a basic helix-loop-helix transcription factor, can regulate the human osteogenic lineage. J Cell Biochem 1999,75(4):566–577. 10.1002/(SICI)1097-4644(19991215)75:4<566::AID-JCB3>3.0.CO;2-0

Lee MS, Lowe G, Flanagan S, Kuchler K, Glackin CA: Human Dermo-1 has attributes similar to twist in early bone development. Bone 2000,27(5):591–602. 10.1016/S8756-3282(00)00380-X

Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, et al.: A twist code determines the onset of osteoblast differentiation. Dev Cell 2004,6(3):423–435. 10.1016/S1534-5807(04)00058-9

Ota MS, Loebel DA, O'Rourke MP, Wong N, Tsoi B, Tam PP: Twist is required for patterning the cranial nerves and maintaining the viability of mesodermal cells. Dev Dyn 2004,230(2):216–228. 10.1002/dvdy.20047

Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT, Chen P, Wang Y, Yan M, Qian Z, et al.: Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci U S A 2008,105(40):15535–15540. 10.1073/pnas.0808266105

Xu G, Zhong Y, Munir S, Yang BB, Tsang BK, Peng C: Nodal induces apoptosis and inhibits proliferation in human epithelial ovarian cancer cells via activin receptor-like kinase 7. J Clin Endocrinol Metab 2004,89(11):5523–5534. 10.1210/jc.2004-0893

Li Y, Tan W, Neo TW, Aung MO, Wasser S, Lim SG, Tan TM: Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci 2009,100(7):1234–1242. 10.1111/j.1349-7006.2009.01164.x

Fang L, Deng Z, Shatseva T, Yang J, Peng C, Du WW, Yee AJ, Ang LC, He C, Shan SW, et al.: MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene 2011,30(7):806–821. 10.1038/onc.2010.465

Fu X, Tian J, Zhang L, Chen Y, Hao Q: Involvement of microRNA-93, a new regulator of PTEN/Akt signaling pathway, in regulation of chemotherapeutic drug cisplatin chemosensitivity in ovarian cancer cells. FEBS Lett 2012,586(9):1279–1286. 10.1016/j.febslet.2012.03.006

Altomare DA, Wang HQ, Skele KL, De Rienzo A, Klein-Szanto AJ, Godwin AK, Testa JR: AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene 2004,23(34):5853–5857. 10.1038/sj.onc.1207721

Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY: miR-21-mediated tumor growth. Oncogene 2007,26(19):2799–2803. 10.1038/sj.onc.1210083

Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007,72(5–6):397–402.

Lou Y, Yang X, Wang F, Cui Z, Huang Y: MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. Int J Mol Med 2010,26(6):819–827.

Polytarchou C, Iliopoulos D, Hatziapostolou M, Kottakis F, Maroulakou I, Struhl K, Tsichlis PN: Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation. Cancer Res 2011,71(13):4720–4731. 10.1158/0008-5472.CAN-11-0365

Li J, Liang S, Yu H, Zhang J, Ma D, Lu X: An inhibitory effect of miR-22 on cell migration and invasion in ovarian cancer. Gynecol Oncol 2010,119(3):543–548. 10.1016/j.ygyno.2010.08.034

Kim TH, Kim YK, Kwon Y, Heo JH, Kang H, Kim G, An HJ: Deregulation of miR-519a, 153, and 485–5p and its clinicopathological relevance in ovarian epithelial tumours. Histopathology 2010,57(5):734–743. 10.1111/j.1365-2559.2010.03686.x

Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H: Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 2007,67(21):10117–10122. 10.1158/0008-5472.CAN-07-2544

Hu X, Macdonald DM, Huettner PC, Feng Z, El Naqa IM, Schwarz JK, Mutch DG, Grigsby PW, Powell SN, Wang X: A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol 2009,114(3):457–464. 10.1016/j.ygyno.2009.05.022

Taylor DD, Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008,110(1):13–21. 10.1016/j.ygyno.2008.04.033

Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E, Peter ME: Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A 2007,104(27):11400–11405. 10.1073/pnas.0704372104

Garzon R, Marcucci G, Croce CM: Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010,9(10):775–789. 10.1038/nrd3179

Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, Yang B: A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res 2009,37(3):e24. 10.1093/nar/gkn1053

Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M, Homer R, Brown D, Bader AG, Weidhaas JB, et al.: Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010,29(11):1580–1587. 10.1038/onc.2009.445

Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG, Slack FJ: Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 2011,19(6):1116–1122. 10.1038/mt.2011.48

Pramanik D, Campbell NR, Karikari C, Chivukula R, Kent OA, Mendell JT, Maitra A: Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther 2011,10(8):1470–1480. 10.1158/1535-7163.MCT-11-0152

Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K: Modulation of microRNA processing by p53. Nature 2009,460(7254):529–533. 10.1038/nature08199

Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, et al.: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011,17(2):211–215. 10.1038/nm.2284

Melo S, Villanueva A, Moutinho C, Davalos V, Spizzo R, Ivan C, Rossi S, Setien F, Casanovas O, Simo-Riudalbas L, et al.: Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci U S A 2011,108(11):4394–4399. 10.1073/pnas.1014720108

Shan G, Li Y, Zhang J, Li W, Szulwach KE, Duan R, Faghihi MA, Khalil AM, Lu L, Paroo Z, et al.: A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol 2008,26(8):933–940. 10.1038/nbt.1481

Jeon HM, Sohn YW, Oh SY, Kim SH, Beck S, Kim S, Kim H: ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res 2011,71(9):3410–3421. 10.1158/0008-5472.CAN-10-3340

Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE: Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis 2010,31(12):2049–2057. 10.1093/carcin/bgq192

Hwang JH, Voortman J, Giovannetti E, Steinberg SM, Leon LG, Kim YT, Funel N, Park JK, Kim MA, Kang GH, et al.: Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One 2010,5(5):e10630. 10.1371/journal.pone.0010630