Current status and future challenges in implementing and upscaling vertical farming systems

Nature Food - Tập 2 Số 12 - Trang 944-956
S.H. van Delden1, Malleshaiah SharathKumar1, Michele Butturini1, Luuk Graamans2, E. Heuvelink1, Murat Kaçıra3, Elias Kaiser1, R. S. Klamer1, Laurens Klerkx4, Gert Kootstra5, Anne Loeber6, R.E. Schouten1, C. Stanghellini2, W. van Ieperen1, Julian C. Verdonk1, Silvère Vialet‐Chabrand1, Ernst J. Woltering7, H.J. van de Zedde8, Ying Zhang9, L.F.M. Marcelis1
1Horticulture and Product Physiology, Wageningen University, Wageningen, The Netherlands
2Greenhouse Horticulture and Flower Bulbs, Wageningen University & Research, Wageningen, the Netherlands
3Biosystems Engineering, University of Arizona, Tucson, AZ, USA
4Knowledge, Technology and Innovation Group, Wageningen University, Wageningen, The Netherlands
5Farm Technology, Wageningen University, Wageningen, the Netherlands
6Faculty of Science, Athena Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
7Wageningen Food & Biobased Research, Wageningen, The Netherlands
8Wageningen University & Research, Wageningen, the Netherlands
9Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).

Orsini, F., Pennisi, G., Zulfiqar, F. & Gianquinto, G. Sustainable use of resources in plant factories with artificial lighting (PFALs). Eur. J. Hortic. Sci. 85, 297–309 (2020).

Beacham, A. M., Vickers, L. H. & Monaghan, J. M. Vertical farming: a summary of approaches to growing skywards. J. Hortic. Sci. Biotechnol. 94, 277–283 (2019).

Kalantari, F., Tahir, O. M., Joni, R. A. & Fatemi, E. Opportunities and challenges in sustainability of vertical farming: a review. J. Landsc. Ecol. 11, 35–60 (2018).

Poorter, H. et al. Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytol. 212, 838–855 (2016).

Mitchell, C. A. & Sheibani, F. in Plant Factory (eds Kozai, T. et al.) 167–184 (Elsevier, 2020); https://doi.org/10.1016/B978-0-12-816691-8.00010-8

Munns, D. P. D. “The awe in which biologists hold physicists”: Frits Went’s first phytotron at Caltech, and an experimental definition of the biological environment. Hist. Phil. Life Sci. 36, 209–231 (2014).

Den Besten, J. in Plant Factory Using Artificial Light (eds Anpo, M. et al.) 307–317 (Elsevier, 2019); https://doi.org/10.1016/B978-0-12-813973-8.00027-0

Despommier, D. The Vertical Farm: Feeding the World in the 21st Century (Macmillan, 2010).

Kozai, T., Niu, G. & Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production (Elsevier, 2016); https://doi.org/10.1016/C2014-0-01039-8

SharathKumar, M., Heuvelink, E. & Marcelis, L. F. M. Vertical farming: moving from genetic to environmental modification. Trends Plant Sci. 25, 724–727 (2020).

Murase, H. The latest development of laser application research in plant factory. Agric. Agric. Sci. Procedia 3, 4–8 (2015).

Jin, W., Urbina, J. L., Heuvelink, E. & Marcelis, L. F. M. Adding far-red to red-blue light-emitting diode light promotes yield of lettuce at different planting densities. Front. Plant Sci. 11, 609977 (2021).

Kalaitzoglou, P. et al. Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption, and fruit production. Front. Plant Sci. 10, 322 (2019).

Li, C. et al. Syndromes of production in intercropping impact yield gains. Nat. Plants 6, 653–660 (2020).

Sarlikioti, V., de Visser, P. H. B., Buck-Sorlin, G. H. & Marcelis, L. F. M. How plant architecture affects light absorption and photosynthesis in tomato: towards an ideotype for plant architecture using a functional–structural plant model. Ann. Bot. 108, 1065–1073 (2011).

Folta, K. M. Breeding new varieties for controlled environments. Plant Biol. 21, 6–12 (2019).

Louarn, G. & Song, Y. Two decades of functional–structural plant modelling: now addressing fundamental questions in systems biology and predictive ecology. Ann. Bot. 126, 501–509 (2020).

Joshi, J. et al. A combination of downward lighting and supplemental upward lighting improves plant growth in a closed plant factory with artificial lighting. HortScience 52, 831–835 (2017).

Kaiser, E., Morales, A. & Harbinson, J. Fluctuating light takes crop photosynthesis on a rollercoaster ride. Plant Physiol. 176, 977–989 (2018).

Vialet-Chabrand, S. & Lawson, T. Dynamic leaf energy balance: deriving stomatal conductance from thermal imaging in a dynamic environment. J. Exp. Bot. 70, 2839–2855 (2019).

Vialet-Chabrand, S., Matthews, J. S. A., Simkin, A. J., Raines, C. A. & Lawson, T. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol. 173, 2163–2179 (2017).

Resco de Dios, V. Circadian regulation and diurnal variation in gas exchange. Plant Physiol. 175, 3–4 (2017).

Simon, N. M. L., Graham, C. A., Comben, N. E., Hetherington, A. M. & Dodd, A. N. The circadian clock influences the long-term water use efficiency of Arabidopsis. Plant Physiol. 183, 317–330 (2020).

Poorter, H. et al. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ. 20, 472–482 (1997).

Kitaya, Y., Tsuruyama, J., Shibuya, T., Yoshida, M. & Kiyota, M. Effects of air current speed on gas exchange in plant leaves and plant canopies. Adv. Space Res. 31, 177–182 (2003).

Frantz, J. M., Ritchie, G., Cometti, N. N., Robinson, J. & Bugbee, B. Exploring the limits of crop productivity: beyond the limits of tipburn in lettuce. J. Am. Soc. Hortic. Sci. 129, 331–338 (2004).

Lim, T. & Kim, Y. H. Analysis of airflow pattern in plant factory with different inlet and outlet locations using computational fluid dynamics. J. Biosyst. Eng. 39, 310–317 (2014).

Ji, Y. et al. Far‐red radiation stimulates dry mass partitioning to fruits by increasing fruit sink strength in tomato. New Phytol. 228, 1914–1925 (2020).

Marschner, P. Marschner’s Mineral Nutrition of Higher Plants (Elsevier, 2012); https://doi.org/10.1016/C2009-0-63043-9

Brilli, F., Loreto, F. & Baccelli, I. Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front. Plant Sci. 10, 264 (2019).

Li, L. et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 3, 929–937 (2020).

Rouphael, Y., Kyriacou, M. C., Petropoulos, S. A., De Pascale, S. & Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 234, 275–289 (2018).

Pizarro, L. & Stange, C. Light-dependent regulation of carotenoid biosynthesis in plants. Cienc. Investig. Agrar. 36, 143–162 (2009).

Gautier, H., Massot, C., Stevens, R., Sérino, S. & Génard, M. Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance. Ann. Bot. 103, 495–504 (2009).

Min, Q., Marcelis, L. F. M., Nicole, C. C. S. & Woltering, E. J. High light intensity applied shortly before harvest improves lettuce nutritional quality and extends the shelf life. Front. Plant Sci. 12, 615355 (2021).

Jin, H. et al. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J. 19, 6150–6161 (2000).

Taulavuori, K., Hyöky, V., Oksanen, J., Taulavuori, E. & Julkunen-Tiitto, R. Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environ. Exp. Bot. 121, 145–150 (2016).

Lefsrud, M. G., Kopsell, D. A., Kopsell, D. E. & Curran-Celentano, J. Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment. Physiol. Plant. 127, 624–631 (2006).

Lefsrud, M. G., Kopsell, D. A. & Sams, C. E. Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience 43, 2243–2244 (2008).

Carvalho, S. D., Schwieterman, M. L., Abrahan, C. E., Colquhoun, T. A. & Folta, K. M. Light quality dependent changes in morphology, antioxidant capacity, and volatile production in sweet basil (Ocimum basilicum). Front. Plant Sci. 7, 1328 (2016).

Samuolienė, G., Sirtautas, R., Brazaitytė, A. & Duchovskis, P. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 134, 1494–1499 (2012).

Voogt, W., Holwerda, H. T. & Khodabaks, R. Biofortification of lettuce (Lactuca sativa L.) with iodine: the effect of iodine form and concentration in the nutrient solution on growth, development and iodine uptake of lettuce grown in water culture. J. Sci. Food Agric. 90, 906–913 (2010).

Eldridge, B. M. et al. Getting to the roots of aeroponic indoor farming. New Phytol. 228, 1183–1192 (2020).

Imam, M., Zhang, S., Ma, J., Wang, H. & Wang, F. Antioxidants mediate both iron homeostasis and oxidative stress. Nutrients 9, 671 (2017).

Vasconcelos, M. W., Gruissem, W. & Bhullar, N. K. Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Curr. Opin. Biotechnol. 44, 8–15 (2017).

Gómez, C. & Jiménez, J. Effect of end-of-production high-energy radiation on nutritional quality of indoor-grown red-leaf lettuce. HortScience 55, 1055–1060 (2020).

Kozai, T. & Niu, G. in Plant Factory (eds Kozai, T. et al.) 7–34 (Elsevier, 2020); https://doi.org/10.1016/B978-0-12-816691-8.00002-9

Jacobson, T. A. et al. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2, 691–701 (2019).

Hemming, S., de Zwart, F., Elings, A., Righini, I. & Petropoulou, A. Remote control of greenhouse vegetable production with artificial intelligence—greenhouse climate, irrigation, and crop production. Sensors 19, 801807 (2019).

Jahnke, S. et al. pheno Seeder—a robot system for automated handling and phenotyping of individual seeds. Plant Physiol. 172, 1358–1370 (2016).

Arad, B. et al. Development of a sweet pepper harvesting robot. J. Field Robot. 37, 1027–1039 (2020).

Lehnert, C., McCool, C., Sa, I. & Perez, T. Performance improvements of a sweet pepper harvesting robot in protected cropping environments. J. Field Robot. https://doi.org/10.1002/rob.21973 (2020).

Ling, X., Zhao, Y., Gong, L., Liu, C. & Wang, T. Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision. Robot. Auton. Syst. 114, 134–143 (2019).

Xiong, Y., Ge, Y., Grimstad, L. & From, P. J. An autonomous strawberry‐harvesting robot: design, development, integration, and field evaluation. J. Field Robot. 37, 202–224 (2020).

Van Henten, E. J. et al. An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system. Biosyst. Eng. 94, 317–323 (2006).

Bac, C. W., van Henten, E. J., Hemming, J. & Edan, Y. Harvesting robots for high-value crops: state-of-the-art review and challenges ahead. J. Field Robot. 31, 888–911 (2014).

Kootstra, G., Wang, X., Blok, P. M., Hemming, J. & van Henten, E. Selective harvesting robotics: current research, trends, and future directions. Curr. Robot. Rep. 2, 95–104 (2021).

Blok, P. M., Evert, F. K., Tielen, A. P. M., Henten, E. J. & Kootstra, G. The effect of data augmentation and network simplification on the image‐based detection of broccoli heads with Mask R‐CNN. J. Field Robot. 38, 85–104 (2021).

Lehnert, C., Tsai, D., Eriksson, A. & McCool, C. 3D Move to see: multi-perspective visual servoing towards the next best view within unstructured and occluded environments. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 3890–3897 (IEEE, 2019); https://doi.org/10.1109/IROS40897.2019.8967918

Zhang, B., Xie, Y., Zhou, J., Wang, K. & Zhang, Z. State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: a review. Comput. Electron. Agric. 177, 105694 (2020).

Vasconez, J. P., Kantor, G. A. & Auat Cheein, F. A. Human–robot interaction in agriculture: a survey and current challenges. Biosyst. Eng. 179, 35–48 (2019).

Shimizu, H., Fukuda, K., Nishida, Y. & Ogura, T. in Plant Factory Vol. 26 (eds Kozai, T. et al.) 377–382 (Elsevier, 2020).

Diamond, J. Guns, Germs, and Steel: The Fates of Human Societies (W. W. Norton, 2005).

Brauman, K. A., Richter, B. D., Postel, S., Malsy, M. & Flörke, M. Water depletion: an improved metric for incorporatingseasonal and dry-year water scarcity into water risk assessments. Elementa (Wash. DC) 44, 000083 (2016).

Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

Sustainable Food Systems: Concept and Framework (FAO, 2018).

Kikuchi, Y., Kanematsu, Y., Yoshikawa, N., Okubo, T. & Takagaki, M. Environmental and resource use analysis of plant factories with energy technology options: a case study in Japan. J. Clean. Prod. 186, 703–717 (2018).

Graamans, L., Baeza, E., van den Dobbelsteen, A., Tsafaras, I. & Stanghellini, C. Plant factories versus greenhouses: comparison of resource use efficiency. Agric. Syst. 160, 31–43 (2018).

Bartzas, G., Zaharaki, D. & Komnitsas, K. Life cycle assessment of open field and greenhouse cultivation of lettuce and barley. Inf. Process. Agric. 2, 191–207 (2015).

Kusuma, P., Pattison, P. M. & Bugbee, B. From physics to fixtures to food: current and potential LED efficacy. Hortic. Res. 7, 56 (2020).

Grubisic, M., van Grunsven, R. H. A., Kyba, C. C. M., Manfrin, A. & Hölker, F. Insect declines and agroecosystems: does light pollution matter? Ann. Appl. Biol. 173, 180–189 (2018).

Singer, A. C., Shaw, H., Rhodes, V. & Hart, A. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front. Microbiol. 7, 1728 (2016).

Roberts, J. M. et al. Vertical farming systems bring new considerations for pest and disease management. Ann. Appl. Biol. 176, 226–232 (2020).

Lee, S. & Lee, J. Beneficial bacteria and fungi in hydroponic systems: types and characteristics of hydroponic food production methods. Sci. Hortic. 195, 206–215 (2015).

Van Gerrewey, T. et al. Microbe–plant growing media interactions modulate the effectiveness of bacterial amendments on lettuce performance inside a plant factory with artificial lighting. Agronomy 10, 101456 (2020).

Hosseinzadeh, S., Verheust, Y., Bonarrigo, G. & Van Hulle, S. Closed hydroponic systems: operational parameters, root exudates occurrence and related water treatment. Rev. Environ. Sci. Bio/Technol. 16, 59–79 (2017).

du Jardin, P. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14 (2015).

Rouphael, Y. & Colla, G. Editorial: biostimulants in agriculture. Front. Plant Sci. 11, 40 (2020).

Lazzarin, M. et al. LEDs make it resilient: effects on plant growth and defense. Trends Plant Sci. 26, 496–508 (2021).

Stratmann, J. Ultraviolet-B radiation co-opts defense signaling pathways. Trends Plant Sci. 8, 526–533 (2003).

Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

Sandström, V. et al. The role of trade in the greenhouse gas footprints of EU diets. Glob. Food Sec. 19, 48–55 (2018).

Armanda, D. T., Guinée, J. B. & Tukker, A. The second green revolution: innovative urban agriculture’s contribution to food security and sustainability—a review. Glob. Food Sec. 22, 13–24 (2019).

Graamans, L., Tenpierik, M., van den Dobbelsteen, A. & Stanghellini, C. Plant factories: reducing energy demand at high internal heat loads through façade design. Appl. Energy 262, 114544 (2020).

Overview of Electricity Production and Use in Europe (EEA, accessed 6 October 2021). https://www.eea.europa.eu/data-and-maps/indicators/overview-of-the-electricity-production-3/assessment-1

Waller, L. & Gugganig, M. Re-visioning public engagement with emerging technology: a digital methods experiment on ‘vertical farming’. Public Underst. Sci. https://doi.org/10.1177/0963662521990977 (2021).

Broad, G. M. Know your indoor farmer: square roots, techno-local food, and transparency as publicity. Am. Behav. Sci. 64, 1588–1606 (2020).

Specht, K., Weith, T., Swoboda, K. & Siebert, R. Socially acceptable urban agriculture businesses. Agron. Sustain. Dev. 36, 17 (2016).

Benis, K. & Ferrão, P. Commercial farming within the urban built environment—taking stock of an evolving field in northern countries. Glob. Food Sec. 17, 30–37 (2018).

Petrovics, D. & Giezen, M. Planning for sustainable urban food systems: an analysis of the up-scaling potential of vertical farming. J. Environ. Plan. Manage. https://doi.org/10.1080/09640568.2021.1903404 (2021).

Specht, K., Siebert, R. & Thomaier, S. Perception and acceptance of agricultural production in and on urban buildings (ZFarming): a qualitative study from Berlin, Germany. Agric. Hum. Values 33, 753–769 (2016).

Eigenbrod, C. & Gruda, N. Urban vegetable for food security in cities: a review. Agron. Sustain. Dev. 35, 483–498 (2015).

Butturini, M. & Marcelis, L. F. M. in Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production 2nd edn (eds Kozai, T. et al.) 77–91 (Elsevier, 2020); https://doi.org/10.1016/B978-0-12-816691-8.00004-2

Benke, K. & Tomkins, B. Future food-production systems: vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 13, 13–26 (2017).

Kosorić, V., Huang, H., Tablada, A., Lau, S.-K. & Tan, H. T. W. Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore. Renew. Sustain. Energy Rev. 111, 197–214 (2019).

Torreggiani, D., Dall’Ara, E. & Tassinari, P. The urban nature of agriculture: bidirectional trends between city and countryside. Cities 29, 412–416 (2012).

Poiroux-Gonord, F. et al. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agric. Food Chem. 58, 12065–12082 (2010).

Xiong, H., Dalhaus, T., Wang, P. & Huang, J. Blockchain technology for agriculture: applications and rationale. Front. Blockchain 3, 7 (2020).

Fairbairn, M. & Guthman, J. Agri-food tech discovers silver linings in the pandemic. Agric. Hum. Values 37, 587–588 (2020).

Clapp, J. & Ruder, S.-L. Precision technologies for agriculture: digital farming, gene-edited crops, and the politics of sustainability. Glob. Environ. Polit. 20, 49–69 (2020).

Diehl, J. A. et al. Feeding cities: Singapore’s approach to land use planning for urban agriculture. Glob. Food Sec. 26, 100377 (2020).

Klerkx, L. & Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: how do we manage diversity and responsibility in food system transition pathways? Glob. Food Sec. 24, 100347 (2020).

Moor, J. H. Why we need better ethics for emerging technologies. Ethics Inf. Technol. 7, 111–119 (2005).

Final Paper on a Strategic Approach to EU Agricultural Research and Innovation (European Commission, 2016); https://ec.europa.eu/programmes/horizon2020/en/news/final-paper-strategic-approach-eu-agricultural-research-and-innovation

Forging a Climate-Resilient Europe—the New EU Strategy on Adaptation to Climate Change (European Commission, 2021); https://ec.europa.eu/clima/sites/clima/files/adaptation/what/docs/eu_strategy_2021.pdf

Regulation of the European Parliament and of the Council Vol. 53 (European Commission, 2018); https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A392%3AFIN

The European Green Deal (European Commission, 2019); https://ec.europa.eu/info/sites/default/files/european-green-deal-communication_en.pdf

A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System (European Commission, 2020); https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590404602495&uri=CELEX%3A52020DC0381

USDA announces grants for urban agriculture and innovative production. USDA FSA (6 May 2020); https://www.fsa.usda.gov/news-room/news-releases/2020/usda-announces-grants-for-urban-agriculture-and-innovative-production

2018 Farm Bill Primer: Support for Urban Agriculture Vol. 2018 (CRS, 2019).

Agriculture Improvement Act of 2018 (US Public Law, 2018); https://www.govinfo.gov/content/pkg/PLAW-115publ334/pdf/PLAW-115publ334.pdf

Pardey, P. G., Chan-Kang, C., Dehmer, S. P. & Beddow, J. M. Agricultural R&D is on the move. Nature 537, 301–303 (2016).

Hu, R. et al. Privatization, public R & D policy, and private R & D investment in China’s agriculture. J. Agric. Resour. Econ. 36, 416–432 (2011).

Montesclaros, J. M. L., Liu, S. & Teng, P. P. S. Scaling Commercial Urban Agriculture in Singapore: An Assessment of the Viability of Leafy Vegetable Production Using Plant Factories with Artificial Lighting in a 2017 Land Tender (First Tranche) Nanyang Technological University Report (2018); https://www.rsis.edu.sg/wp-content/uploads/2018/02/SUBMISSION_Reformat-NTS-Report-_-Scaling-Commercial-Urban-Agriculture_revised-from-Email-February.pdf

Kozai, T., Niu, G. & Takagaki, M. Plant Factory, an Indoor Vertical Farming System for Efficient Quality Food Production (Academic Press, 2020); https://doi.org/10.1016/B978-0-12-816691-8.01001-3

Huang, J., Hu, R. & Rozelle, S. China’s agricultural research system and reforms: challenges and implications for developing countries. Asian J. Agric. Dev. 1, 98–112 (2004).

Abbasi, A. S. & Aamir, S. M. Sustainable development: factors influencing public intention towards vertical farming in China and moderating role of awareness. J. Soc. Polit. Sci. 4, 2615–3718 (2021).

Goodman, W. & Minner, J. Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City. Land Use Policy 83, 160–173 (2019).

Swierstra, T., van Est, R. & Boenink, M. Taking care of the symbolic order: how converging technologies challenge our concepts. Nanoethics 3, 269–280 (2009).

Vertical Farming Shoots…Organic in the Foot? 49–50 (ARC, 2020). https://www.arc2020.eu/vertical-farming-shoots-organic-in-the-foot/

Report of the Forty-First Session of the Codex Committee on Nutrition and Foods for Special Dietary Uses (FAO, WHO, 2020); http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-720-41%252FReport%252FAdoption%252FREP20_NFSDUe.pdf

Google Trends 2004 to 2021: Vertical Farming (Google, accessed 6 October 2020); https://trends.google.com/trends/explore?date=2004-01-01%202021-03-12&q=vertical%20farming

Pattison, P. M., Tsao, J. Y., Brainard, G. C. & Bugbee, B. LEDs for photons, physiology and food. Nature 563, 493–500 (2018).

SkyGreens (SkyGreens, 2010). https://www.skygreens.com/about-skygreens

Ravishankar, E. et al. Balancing crop production and energy harvesting in organic solar-powered greenhouses. Cell Rep. Phys. Sci. 2, 100381 (2021).

Brynjolfsson, E., Hu, Y. J. & Smith, M. D. The longer tail: the changing shape of Amazon’s sales distribution curve. SSRN Electron. J. https://doi.org/10.2139/ssrn.1679991 (2010).

Anderson, C. The long tail. Wired Magazine (10 January 2004); https://www.wired.com/2004/10/tail/

Schmidt, S. M., Belisle, M. & Frommer, W. B. The evolving landscape around genome editing in agriculture. EMBO Rep. 21, 19–22 (2020).

Huebbers, J. W. & Buyel, J. F. On the verge of the market—plant factories for the automated and standardized production of biopharmaceuticals. Biotechnol. Adv. 46, 107681 (2021).

Ditzler, L., van Apeldoorn, D. F., Schulte, R. P. O., Tittonell, P. & Rossing, W. A. H. Redefining the field to mobilize three-dimensional diversity and ecosystem services on the arable farm. Eur. J. Agron. 122, 126197 (2021).

Rosenqvist, E., Großkinsky, D. K., Ottosen, C.-O. & van de Zedde, R. The phenotyping dilemma—the challenges of a diversified phenotyping community. Front. Plant Sci. 10, 16 (2019).

Steinwand, M. A. & Ronald, P. C. Crop biotechnology and the future of food. Nat. Food 1, 273–283 (2020).