Current knowledge and perspectives of Paenibacillus: a review

Elliot Grady1, Jacqueline MacDonald2, Linda Liu1, Alex Richman1, Ze Chun Yuan2
1London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
2Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, Dental Science Building Rm. 3014, London, ON, N6A 5C1, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zeigler DR. The family Paenibacillacea. In: Strain catalog and reference. Columbus: Bacillus Genetic Stock Center; 2013. p. 1–32.

Priest FG, Goodfellow M, Todd C. A numerical classification of the genus Bacillus. J Gen Microbiol. 1988;134:1847–82.

Ash C, Farrow J, Wallbanks S, Collins M. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol. 1991;13:202–6.

Ash C, Priest F, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek. 1993;64:253–60.

Trüper HG. The type species of the genus Paenibacillus Ash et al. 1994 is Paenibacillus polymyxa. Opinion 77. Int J Syst Evol Microbiol. 2005;55:513.

Heyndrickx M, Vandemeulebroecke K, Scheldeman P, Hoste B, Kersters K, De Vos P, et al. Paenibacillus (Formerly Bacillus) gordonae (Pichinoty et. al. 1986) Ash et al. 1994 is a later subjective synonym of Paenibacillus (Formerly Bacillus) validus (Nakamura 1984) Ash et al. 1994: emended description of P. validus. Int J Syst Bacteriol. 1995;45:661–9.

Heyndrickx M, Vandemeulebroecke K, Hoste B, Janssen P, Kersters K, De Vos P, et al. Reclassification of Paenibacillus (formerly Bacillus) pulvifaciens (Nakamura 1984) Ash et al. 1994, a later subjective synonym of Paenibacillus (formerly Bacillus) larvae (White 1906) Ash et al. 1994, as a subspecies of P. larvae, with emended descriptions of P. larvae as P. larvae subsp. larvae and P. larvae subsp. pulvifaciens. Int J Syst Bacteriol. 1996;46:270–9.

Shida O, Takagi H, Kadowaki K, Nakamura I, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol. 1997;47:289–98.

Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol. 1994;44:812–26.

Dsouza M, Taylor MW, Turner SJ, Aislabie J. Genome-based comparative analyses of Antarctic and temperate species of Paenibacillus. PLoS ONE. 2014;9:e108009.

Xiao B, Sun YF, Lian B, Chen TM. Complete genome sequence and comparative genome analysis of the Paenibacillus mucilaginosus K02. Microb Pathog. 2016;93:194–203.

Yao R, Wang R, Wang D, Su J, Zheng SX, Wang GJ. Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol. 2014;64:805–11.

Sheela T, Usharani P. Influence of plant growth promoting rhizobacteria (PGPR) on the growth of maize (Zea mays L.). Gold Res Thoughts. 2013;3:629–40.

Han Z, Zhang Z, Dong Y, Yang M. Effects of endophytic bacteria P22 and S16 in Populus on the rooting and growth of the relative species plants. J Northeast For Univ. 2014;42:117–21.

Fürnkranz M, Adam E, Müller H, Grube M, Huss H, Winkler J, et al. Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. Eur J Plant Pathol. 2012;134:509–19.

de Souza R, Meyer J, Schoenfeld R, da Costa PB, Passaglia LMP. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann Microbiol. 2014;65:951–64.

Ker K, Seguin P, Driscoll BT, Fyles JW, Smith DL. Switchgrass establishment and seeding year production can be improved by inoculation with rhizosphere endophytes. Biomass Bioenergy. 2014;47:295–301.

Weselowski B, Nathoo N, Eastman AW, MacDonald J, Yuan ZC. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol. 2016;16:244.

Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2013;2:1.

Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek. 2014;106:85–125.

Galloway JN, Cowling EB. Reactive nitrogen and the world: 200 years of change. Ambio. 2002;31:64–71.

Näsholm T, Kielland K, Ganeteg U. Uptake of organic nitrogen by plants. New Phytol. 2009;182:31–48.

Boyd ES, Peters JW. New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol. 2013;4:201.

Li XX, Liu Q, Liu XM, Shi HW, Chen SF. Using synthetic biology to increase nitrogenase activity. Microb Cell Fact. 2016;15:1.

Xie JB, Du Z, Bai L, Tian C, Zhang Y, Xie JY, et al. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet. 2014;10:e1004231.

Eastman AW, Heinrichs DE, Yuan ZC. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness. BMC Genom. 2014;15:851.

Xie J, Shi H, Du Z, Wang T, Liu X, Chen S. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Sci Rep. 2016;6:21329.

Fernandes GDC, Trarbach LJ, De Campos SB, Beneduzi A, Passaglia LMP. Alternative nitrogenase and pseudogenes: unique features of the Paenibacillus riograndensis nitrogen fixation system. Res Microbiol. 2014;165:571–80.

Wang LY, Li J, Li QX, Chen SF. Paenibacillus beijingensis sp. nov., a nitrogen-fixing species isolated from wheat rhizosphere soil. Antonie Van Leeuwenhoek. 2013;104:675–83.

Das SN, Dutta S, Kondreddy A, Chilukoti N, Pullabhotla SVSRN, Vadlamudi S, et al. Plant growth-promoting chitinolytic Paenibacillus elgii responds positively to tobacco root exudates. J Plant Growth Regul. 2010;29:409–18.

Marra LM, Sousa Soares CRF, de Oliveira SM, Ferreira PAA, Soares BL, de Carvalho RF, et al. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil. 2012;357:289–307.

Wang Y, Shi Y, Li B, Shan C, Ibrahim M, Jabeen A, et al. Phosphate solubilization of Paenibacillus polymyxa and Paenibacillus macerans from mycorrhizal and non-mycorrhizal cucumber plants. Afr J Micro Res. 2012;6:4567–73.

Hu X, Chen J, Guo J. Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol. 2006;22:983–90.

Pandya M, Rajput M, Rajkumar S. Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology. 2015;84:80–9.

Raza W, Shen Q. Growth, Fe3 + reductase activity, and siderophore production by Paenibacillus polymyxa SQR-21 under differential iron conditions. Curr Microbiol. 2010;61:390–5.

Hayat R, Ahmed I, Sheirdil RA. An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In: Ahmad MSA, Aksoy A, editors. Crop production for agricultural improvement. Berlin: Springer; 2012. p. 557–79.

Wen Y, Wu X, Teng Y, Qian C, Zhan Z, Zhao Y, et al. Identification and analysis of the gene cluster involved in biosynthesis of paenibactin, a catecholate siderophore produced by Paenibacillus elgii B69. Environ Microbiol. 2011;13:2726–37.

Hertlein G, Müller S, Garcia-Gonzalez E, Poppinga L, Süssmuth RD, Genersch E. Production of the catechol type siderophore bacillibactin by the honey bee pathogen Paenibacillus larvae. PLoS ONE. 2014;9:e108272.

Zhou C, Guo J, Zhu L, Xiao X, Xie Y, Zhu J, et al. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol Biochem. 2016;105:162–73.

Delker C, Raschke A, Quint M. Auxin dynamics: the dazzling complexity of a small molecule’s message. Planta. 2008;227:929–41.

Patten CL, Blakney AJC, Coulson TJD. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol. 2013;39:395–415.

Pichard B, Thouvenot D. Effect of Bacillus polymyxa seed treatments on control of black-rot and damping-off of cauliflower. Seed Sci Technol. 1999;27:455–65.

Wakelin SA, Walter M, Jaspers M, Stewart A. Biological control of Aphanomyces euteiches root-rot of pea with spore-forming bacteria. Australas Plant Pathol. 2002;31:401–7.

Jeon YH, Chang SP, Hwang I, Kim YH. Involvement of growth-promoting rhizobacterium Paenibacillus polymyxa in root rot of stored Korean ginseng. J Microbiol Biotechnol. 2003;13:881–91.

Yang J, Kharbanda PD, Mirza M. Evaluation of Paenibacillus polymyxa PKB1 for biocontrol of pythium disease of cucumber in a hydroponic system. Acta Hortic. 2004;635:59–66.

Akhtar MS, Siddiqui ZA. Biocontrol of a chickpea root-rot disease complex with Glomus intraradices, Pseudomonas putida and Paenibacillus polymyxa. Australas Plant Pathol. 2007;36:175–80.

Haggag WM. Colonization of exopolysaccharide-producing Paenibacillus polymyxa on peanut roots for enhancing resistance against crown rot disease. Afr J Biotechnol. 2007;6:1568–77.

Zhou K, Yamagishi M, Osaki M. Paenibacillus BRF-1 has biocontrol ability against Phialophora gregata disease and promotes soybean growth. Soil Sci Plant Nutr. 2008;54:870–5.

Phi QT, Park YM, Seul KJ, Ryu CM, Park SH, Kim JG, et al. Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper. J Microbiol Biotechnol. 2010;20:1605–13.

Antonopoulos DF, Tjamos SE, Antoniou PP, Rafeletos P, Tjamos EC. Effect of Paenibacillus alvei, strain K165, on the germination of Verticillium dahliae microsclerotia in planta. Biol Control. 2008;46:166–70.

Von Der Weid I, Artursson V, Seldin L, Jansson JK. Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177. World J Microbiol Biotechnol. 2005;21:1591–7.

Lapidot D, Dror R, Vered E, Mishli O, Levy D, Helman Y. Disease protection and growth promotion of potatoes (Solanum tuberosum L.) by Paenibacillus dendritiformis. Plant Pathol. 2014;64:545–51.

Naing KW, Anees M, Kim SJ, Nam Y, Kim YC, Kim KY. Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann Microbiol. 2014;64:55–63.

Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, et al. Fungal effectors and plant susceptibility. Annu Rev Plant Biol. 2015;66:513–45.

Martin NI, Hu H, Moake MM, Churey JJ, Whittal R, Worobo RW, et al. Isolation, structural characterization, and properties of mattacin (Polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J Biol Chem. 2003;278:13124–32.

Bae YS, Park K, Kim CH. Bacillus spp. as biocontrol agents of root rot and phytophthora blight on ginseng. Plant Pathol J. 2004;20:63–6.

Gulati MK, Koch E, Sikora RA, Zeller W. Biological control of Phytophthora diseases on strawberry with rhizobacteria. Bull OILB/SROP. 2001;24:51–5.

Jung TK, Kim JH, Song HG. Antifungal activity and plant growth promotion by rhizobacteria inhibiting growth of plant pathogenic fungi. Kor J Microbiol. 2012;48:16–21.

Huang E, Yousef AE. The lipopeptide antibiotic paenibacterin binds to the bacterial outer membrane and exerts bactericidal activity through cytoplasmic membrane damage. Appl Environ Microbiol. 2014;80:2700–4.

Singh AK, Ghodke I, Chhatpar HS. Pesticide tolerance of Paenibacillus sp. D1 and its chitinase. J Environ Manage. 2009;91:358–62.

Raza W, Yuan J, Wu YC, Rajer FU, Huang Q, Qirong S. Biocontrol traits of two Paenibacillus polymyxa strains SQR-21 and WR-2 in response to fusaric acid, a phytotoxin produced by Fusarium species. Plant Pathol. 2015;64:1041–52.

Montesinos E. Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol. 2003;6:245–52.

Enright MR, Griffin CT. Effects of Paenibacillus nematophilus on the entomopathogenic nematode Heterorhabditis megidis. J Invertebr Pathol. 2005;88:40–8.

Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol. 2014;52:347–75.

Lee B, Farag MA, Park HB, Kloepper JW, Lee SH, Ryu CM. Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS ONE. 2012;7:e48744.

Tjamos SE, Flemetakis E, Paplomatas EJ, Katinakis P. Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol Plant-Microbe Interact. 2005;18:555–61.

Sang MK, Kim EN, Han GD, Kwack MS, Jeun YC, Kim KD. Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Phytopathology. 2014;104:834–42.

Gkizi D, Lehmann S, L’Haridon F, Serrano M, Paplomatas EJ, Métraux JP, et al. The innate immune signaling system as a regulator of disease resistance and induced systemic resistance activity against Verticillium dahliae. Mol Plant-Microbe Interact. 2016;29:313–23.

Khan Z, Son S, Akhtar J, Gautam N, Kim Y. Plant growth-promoting rhizobacterium (Paenibacillus polymyxa) induced systemic resistance in tomato (Lycopersicon esculentum) against root-knot nematode (Meloidogyne incognita). Indian J Agric Sci. 2012;82:603–7.

Kumar S, Chauhan PS, Agrawal L, Raj R, Srivastava A, Gupta S, et al. Paenibacillus lentimorbus inoculation enhances tobacco growth and extenuates the virulence of cucumber mosaic virus. PLoS ONE. 2016;11:e0149980.

Farag MA, Zhang H, Ryu CM. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol. 2013;39:1007–18.

Xin XF, He SY. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol. 2013;51:473–98.

Sharma A, Thakur DR, Kanwar S, Chandla VK. Diversity of entomopathogenic bacteria associated with the white grub, Brahmina coriacea. J Pest Sci. 2013;86:261–73.

Neung S, Nguyen XH, Naing KW, Lee YS, Kim KY. Insecticidal potential of Paenibacillus elgii HOA73 and its combination with organic sulfur pesticide on diamondback moth, Plutella xylostella. J Kor Soc Appl Biol Chem. 2014;57:181–6.

Klein MG. Pest management of soil-inhabiting insects with microorganisms. Agric Ecosyst Environ. 1988;24:337–49.

Singh AK, Singh A, Joshi P. Combined application of chitinolytic bacterium Paenibacillus sp. D1 with low doses of chemical pesticides for better control of Helicoverpa armigera. Int J Pest Manage. 2016;62:222–7.

Bravo A, Gill SS, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 2007;49:423–35.

Yokoyama T, Tanaka M, Hasegawa M. Novel cry gene from Paenibacillus lentimorbus strain Semadara inhibits ingestion and promotes insecticidal activity in Anomala cuprea larvae. J Invertebr Pathol. 2004;85:25–32.

Zhang J, Hodgman TC, Krieger L, Schnetter W, Schairer HU. Cloning and analysis of the first cry gene from Bacillus popilliae. J Bacteriol. 1997;179:4336–41.

Gorashi N, Tripathi M, Kalia V, Gujar G. Identification and characterization of the Sudanese Bacillus thuringiensis and related bacterial strains for their efficacy against Helicoverpa armigera and Tribolium castaneum. Indian J Exp Biol. 2014;52:637–49.

Hussie AI, Nahed Ibrahim A, Hatem AE-S, Aldebis HK, Vargas-Osuna E. Actividad insecticida y fijadora de nitrógeno de la bacteria transformada Paenibacillus polymyxa que expresa Cry1C. Rev Col Entomol. 2011;37:192–7.

Ibrahim NAGA, Hussien AI, Hatem AES, Aldebis HK, Vargas-Osuna E. Persistence of the transformed Paenibacillus polymyxa expressing CRY1C in the plant leaves and its effect on chlorophyll and carotenoid. Life Sci J. 2014;11:433–42.

Kim B, Song GC, Ryu CM. Root exudation by aphid leaf infestation recruits root-associated Paenibacillus spp. to lead plant insect susceptibility. J Microbiol Biotechnol. 2016;26:549–57.

Lorentz RH, Ártico S, Da Silveira AB, Einsfeld A, Corção G. Evaluation of antimicrobial activity in Paenibacillus spp. strains isolated from natural environment. Lett Appl Microbiol. 2006;43:541–7.

Kim SG, Khan Z, Jeon YH, Kim YH. Inhibitory effect of Paenibacillus polymyxa GBR-462 on Phytophthora capsici causing phytophthora blight in chili pepper. J Phytopathol. 2009;157:329–37.

Allard S, Enurah A, Strain E, Millner P, Rideout SL, Brown EW, et al. In situ evaluation of Paenibacillus alvei in reducing carriage of Salmonella enterica serovar newport on whole tomato plants. Appl Environ Microbiol. 2014;80:3842–9.

Hong T-Y, Meng M. Biochemical characterization and antifungal activity of an endo-1, 3-β-glucanase of Paenibacillus sp. isolated from garden soil. Appl Microbiol Biotechnol. 2003;61:472–8.

Aktuganov G, Melentjev A, Galimzianova N, Khalikova E, Korpela T, Susi P. Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and β-1,3-glucanase production. Can J Microbiol. 2008;54:577–87.

Li J, Liu W, Luo L, Dong D, Liu T, Zhang T, et al. Expression of Paenibacillus polymyxa β-1, 3-1, 4-glucanase in Streptomyces lydicus A01 improves its biocontrol effect against Botrytis cinerea. Biol Control. 2015;90:141–7.

Seo DJ, Lee YS, Kim KY, Jung WJ. Antifungal activity of chitinase obtained from Paenibacillus ehimensis MA2012 against conidial of Collectotrichum gloeosporioides in vitro. Microb Pathog. 2016;96:10–4.

Singh AK, Chhatpar HS. Purification and characterization of chitinase from Paenibacillus sp. D1. Appl Biochem Biotechnol. 2011;164:77–88.

Morath SU, Hung R, Bennett JW. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev. 2012;26:73–83.

Garbeva P, Hordijk C, Gerards S, De Boer W. Volatile-mediated interactions between phylogenetically different soil bacteria. Front Microbiol. 2014;5:124.

Raza W, Yuan J, Ling N, Huang Q, Shen Q. Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biol Control. 2015;80:89–95.

Lee YS, Nguyen XH, Cho JY, Moon JH, Kim KY. Isolation and antifungal activity of methyl 2,3-dihydroxybenzoate from Paenibacillus elgii HOA73. Microb Pathog 2016.

Huang E, Yousef AE. Biosynthesis of paenibacillin, a lantibiotic with N-terminal acetylation, by Paenibacillus polymyxa. Microbiol Res. 2015;181:15–21.

Barbosa J, Caetano T, Mendo S. Class I and class II lanthipeptides produced by Bacillus spp. J Nat Prod. 2015;78:2850–66.

Lohans CT, Huang Z, Van Belkum MJ, Giroud M, Sit CS, Steels EM, et al. Structural characterization of the highly cyclized lantibiotic paenicidin A via a partial desulfurization/reduction strategy. J Am Chem Soc. 2012;134:19540–3.

Baindara P, Chaudhry V, Mittal G, Liao LM, Matos CO, Khatri N, et al. Characterization of the antimicrobial peptide penisin, a class Ia novel lantibiotic from Paenibacillus sp. strain A3. Antimicrob Agents Chemother. 2016;60:580–91.

He Z, Kisla D, Zhang L, Yuan C, Green-Church KB, Yousef AE. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl Environ Microbiol. 2007;73:168–78.

Abriouel H, Franz CMAP, Omar NB, Galvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 2011;35:201–32.

Cochrane SA, Vederas JC. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev. 2014;36:31.

Tambadou F, Caradec T, Gagez A-L, Bonnet A, Sopéna V, Bridiau N, et al. Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster. Arch Microbiol. 2015;197:521–32.

Mousa WK, Raizada MN. Biodiversity of genes encoding anti-microbial traits within plant associated microbes. Front Plant Sci. 2015;6:231.

Shoji J, Kato T, Hinoo I. The structure of polymyxin S1. Studies on antibiotics from the genus Bacillus. XXI. J Antibiot. 1977;30:1035–41.

Shoji J, Kato T, Hinoo H. The structure of polymyxin T1. Studies on antibiotics from the genus Bacillus. XXII. J Antibiot. 1977;30:1042–8.

Choi SK, Park SY, Kim R, Kim SB, Lee CH, Kim JF, et al. Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol. 2009;191:3350–8.

Velkov T, Thompson PE, Nation RL, Li J. Structure-activity relationships of polymyxin antibiotics. J Med Chem. 2010;53:1898–916.

Velkov T, Roberts KD, Nation RL, Wang J, Thompson PE, Li J. Teaching ‘old’ polymyxins new tricks: new-generation lipopeptides targeting gram-negative ‘superbugs’. ACS Chem Biol. 2014;9:1172–7.

Kajimura Y, Kaneda M, Fusaricidin A. A new depsipeptide antibiotic produced by Bacillus polymyxa KT-8 taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot. 1996;49:129–35.

Bionda N, Pitteloud JP, Cudic P. Cyclic lipodepsipeptides: a new class of antibacterial agents in the battle against resistant bacteria. Future Med Chem. 2013;5:1311–30.

Han JW, Kim EY, Lee JM, Kim YS, Bang E, Kim BS. Site-directed modification of the adenylation domain of the fusaricidin nonribosomal peptide synthetase for enhanced production of fusaricidin analogs. Biotechnol Lett. 2012;34:1327–34.

Liang TW, Wang SL. Recent advances in exopolysaccharides from Paenibacillus spp.: production, isolation, structure, and bioactivities. Mar Drugs. 2015;13:1847–63.

Liu J, Luo J, Ye H, Zeng X. Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem Toxicol. 2012;50:767–72.

Pleszczyńska M, Wiater A, Janczarek M, Szczodrak J. (1 → 3)-α-d-Glucan hydrolases in dental biofilm prevention and control: a review. Int J Biol Macromol. 2015;79:761–78.

Saxena N, Pore S, Arora P, Kapse N, Engineer A, Ranade DR, et al. Cultivable bacterial flora of Indian oil reservoir: isolation, identification and characterization of the biotechnological potential. Biologia. 2015;70:1–10.

Yadav AN, Sachan SG, Verma P, Saxena AK. Bioprospecting of plant growth promoting psychrotrophic bacilli from the cold desert of north western indian himalayas. Indian J Exp Biol. 2016;54:142–50.

Mihajlovski KR, Carević MB, Dević ML, Šiler-Marinković S, Rajilić-Stojanović MD, Dimitrijević-Branković S. Lignocellulosic waste material as substrate for Avicelase production by a new strain of Paenibacillus chitinolyticus CKS1. Int Biodeterior Biodegrad. 2015;104:426–34.

Raddadi N, Cherif A, Daffonchio D, Fava F. Halo-alkalitolerant and thermostable cellulases with improved tolerance to ionic liquids and organic solvents from Paenibacillus tarimensis isolated from the Chott El Fejej, Sahara desert, Tunisia. Bioresour Technol. 2013;150:121–8.

Li O, Lu C, Liu A, Zhu L, Wang PM, Qian CD, et al. Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment. Bioresour Technol. 2013;134:87–93.

Abbasian F, Lockington R, Mallavarapu M, Naidu R. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol. 2015;176:670–99.

Haritash A, Kaushik C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 2009;169:1–15.

Spadaro JT, Isabelle L, Renganathan V. Hydroxyl radical mediated degradation of azo dyes: evidence for benzene generation. Environ Sci Technol. 1994;28:1389–93.

Ramya M, Anusha B, Kalavathy S. Decolorization and biodegradation of Indigo carmine by a textile soil isolate Paenibacillus larvae. Biodegradation. 2008;19:283–91.

Moosvi S, Kher X, Madamwar D. Isolation, characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes Pigment. 2007;74:723–9.

Watanapokasin RY, Boonyakamol A, Sukseree S, Krajarng A, Sophonnithiprasert T, Kanso S, et al. Hydrogen production and anaerobic decolorization of wastewater containing reactive blue 4 by a bacterial consortium of Salmonella subterranea and Paenibacillus polymyxa. Biodegradation. 2009;20:411–8.

Choi K, Park C, Kim S, Lyoo W, Lee SH, Lee J. Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in dyeing wastewater. J Microbiol Biotechnol. 2004;14:1009–13.

Raj A, Kumar S, Haq I, Singh SK. Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecol Eng. 2014;71:355–62.

Almeida PF, Moreira RS, Almeida RCC, Guimarães AK, Carvalho AS, Quintella C, et al. Selection and application of microorganisms to improve oil recovery. Eng Life Sci. 2004;4:319–25.

Ganesh A, Lin J. Diesel degradation and biosurfactant production by gram-positive isolates. Afr J Biotechnol. 2009;8:5847–54.

Adebayo EA, Oloke JK, Aina DA. Effect of culture parameters of a bacterial consortium on biodegradation of bitumen. Adv Environ Biol. 2009;3:46–52.

Esmaeili Taheri H, Hatamipour MS, Emtiazi G, Beheshti M. Bioremediation of DSO contaminated soil. Process Saf Environ Prot. 2008;86:208–12.

Haggblom MM. Microbe degrades naphthalene. Ind Bioprocess. 2005;27:2.

Al-Saleh E, Obuekwe C. Crude oil biodegradation activity in potable water. Int Biodeterior Biodegrad. 2014;93:18–24.

Deora A, Giri R, Suneja S, Goyal S, Kukreja K. Isolation and characterization of pyrene degrading bacteria. Pollut Res. 2012;31:25–32.

Guisado IM, Purswani J, Gonzalez-Lopez J, Pozo C. Physiological and genetic screening methods for the isolation of methyl tert-butyl ether-degrading bacteria for bioremediation purposes. Int Biodeterior Biodegrad. 2015;97:67–74.

Morrissey BJ, Helgason T, Poppinga L, Fünfhaus A, Genersch E, Budge GE. Biogeography of Paenibacillus larvae, the causative agent of American foulbrood, using a new multilocus sequence typing scheme. Environ Microbiol. 2015;17:1414–24.

Reynaldi FJ, Albo GN, Alippi AM. Effectiveness of tilmicosin against Paenibacillus larvae, the causal agent of American Foulbrood disease of honeybees. Vet Microbiol. 2008;132:119–28.

Reybroeck W, Daeseleire E, De Brabander HF, Herman L. Antimicrobials in beekeeping. Vet Microbiol. 2012;158:1–11.

Erler S, Denner A, Bobiş O, Forsgren E, Moritz RFA. Diversity of honey stores and their impact on pathogenic bacteria of the honeybee, Apis mellifera. Ecol Evol. 2014;4:3960–7.

Garcia-Gonzalez E, Müller S, Ensle P, Süssmuth RD, Genersch E. Elucidation of sevadicin, a novel non-ribosomal peptide secondary metabolite produced by the honey bee pathogenic bacterium Paenibacillus larvae. Environ Microbiol. 2014;16:1297–309.

Müller S, Garcia-Gonzalez E, Mainz A, Hertlein G, Heid NC, Mösker E, et al. Paenilamicin: structure and biosynthesis of a hybrid nonribosomal peptide/polyketide antibiotic from the bee pathogen Paenibacillus larvae. Angew Chem Int Ed. 2014;53:10821–5.

Sood S, Steinmetz H, Beims H, Mohr KI, Stadler M, Djukic M, et al. Paenilarvins: Iturin family Lipopeptides from the honey bee pathogen Paenibacillus larvae. ChemBioChem. 2014;15:1947–55.

Hernández-Lõpez J, Crockett S, Kunert O, Hammer E, Schuehly W, Bauer R, et al. In vitro growth inhibition by Hypericum extracts and isolated pure compounds of Paenibacillus larvae, a lethal disease affecting honeybees worldwide. Chem Biodivers. 2014;11:695–708.

Djukic M, Brzuszkiewicz E, Fünfhaus A, Voss J, Gollnow K, Poppinga L, et al. How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae. PLoS ONE. 2014;9:e90914.

Garcia-Gonzalez E, Genersch E. Honey bee larval peritrophic matrix degradation during infection with Paenibacillus larvae, the aetiological agent of American foulbrood of honey bees, is a key step in pathogenesis. Environ Microbiol. 2013;15:2894–901.

Krska D, Ravulapalli R, Fieldhouse RJ, Lugo MR, Merrill AR. C3larvin toxin, an ADP-ribosyltransferase from Paenibacillus larvae. J Biol Chem. 2015;290:1639–53.

Jatulan EO, Rabajante JF, Banaay CGB, Fajardo AC Jr, Jose EC. A mathematical model of intra-colony spread of American foulbrood in European honeybees (Apis mellifera L.). PLoS ONE. 2015;10:e0143805.

Müller S, Garcia-Gonzalez E, Genersch E, Süssmuth RD. Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae. Nat Prod Rep. 2015;32:765–78.

Wilson MB, Brinkman D, Spivak M, Gardner G, Cohen JD. Regional variation in composition and antimicrobial activity of US propolis against Paenibacillus larvae and Ascosphaera apis. J Invertebr Pathol. 2015;124:44–50.

Boonsai P, Phuwapraisirisan P, Chanchao C. Antibacterial activity of a cardanol from thai Apis mellifera propolis. Int J Med Sci. 2014;11:327–36.

Anjum SI, Ayaz S, Shah AH, Khan S, Khan SN. Controlling honeybee pathogen by using neem and Barbaka plant extracts. Biotechnol Biotechnol Equip. 2015;29:901–6.

Piana M, De Brum TF, Boligon AA, Alves CF, De Freitas RB, Nunes LT, et al. In vitro growth-inhibitory effect of brazilian plants extracts against Paenibacillus larvae and toxicity in bees. An Acad Bras Cienc. 2015;87:1041–7.

Ansari MJ, Al-Ghamdi A, Usmani S, Al-Waili N, Nuru A, Sharma D, et al. In vitro evaluation of the effects of some plant essential oils on Paenibacillus larvae, the causative agent of American foulbrood. Biotechnol Biotechnol Equip. 2016;30:49–55.

Fatrcová-Šramková K, Nôžková J, Máriássyová M, Kačániová M. Biologically active antimicrobial and antioxidant substances in the Helianthus annuus L. bee pollen. J Environ Sci Health, Part B. 2016;51:176–81.

Nguyen TM, Kim J. Bacillus polymachus sp. nov., with a broad range of antibacterial activity, isolated from forest topsoil samples by using a modified culture method. Int J Syst Evol Microbiol. 2015;65:704–9.

Jaouani I, Abbassi MS, Alessandria V, Bouraoui J, Ben Salem R, Kilani H, et al. High inhibition of Paenibacillus larvae and Listeria monocytogenes by enterococcus isolated from different sources in tunisia and identification of their bacteriocin genes. Lett Appl Microbiol. 2014;59:17–25.

Oliveira A, Leite M, Kluskens LD, Santos SB, Melo LDR, Azeredo J, et al. The first Paenibacillus larvae bacteriophage endolysin (PlyPl23) with high potential to control American foulbrood. PLoS ONE. 2015;10:e0132095.

Feng M, Fang Y, Han B, Xu X, Fan P, Hao Y, et al. In-depth N-Glycosylation reveals species-specific modifications and functions of the royal jelly protein from western (Apis mellifera) and eastern honeybees (Apis cerana). J Proteome Res. 2015;14:5327–40.

Katznelson H. Bacillus apiarius, n. sp., an aerobic spore-forming organism isolated from honeybee larvae. J Bacteriol. 1955;70:635–6.

Gaggìa F, Baffoni L, Stenico V, Alberoni D, Buglione E, Lilli A, et al. Microbial investigation on honey bee larvae showing atypical symptoms of European foulbrood. Bull Insectol. 2015;68:321–7.

Duval D, Galinier R, Mouahid G, Toulza E, Allienne JF, Portela J, et al. A novel bacterial pathogen of Biomphalaria glabrata: a potential weapon for schistosomiasis control? PLoS Negl Trop Dis. 2015;9:e0003489.

Isaac O. Prevalence of snail vectors of schistosomiasis and their infection rates in two localities within Ahmadu Bello University (ABU) Campus, Zaria, Kaduna State, Nigeria. J Cell Anim Biol. 2009;3:058–61.

Padhi S, Dash M, Sahu R, Panda P. Urinary tract infection due to Paenibacillus alvei in a chronic kidney disease: a rare case report. J Lab Phys. 2013;5:133–5.

Reboli AC, Bryan CS, Farrar WE. Bacteremia and infection of a hip prosthesis caused by Bacillus alvei. J Clin Microbiol. 1989;27:1395–6.

DeLeon SD, Welliver RC Sr. Paenibacillus alvei sepsis in a neonate. Pediatr Infect Dis J. 2016;35:358.

Roux V, Fenner L, Raoult D. Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int J Syst Evol Microbiol. 2008;58:682–7.

Bosshard PP, Zbinden R, Altwegg M. Paenibacillus turicensis sp. nov., a novel bacterium harbouring heterogeneities between 16S rRNA genes. Int J Syst Evol Microbiol. 2002;52:2241–9.

Roux V, Raoult D. Paenibacillus massiliensis sp. nov. Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol. 2004;54:1049–54.

Wenzler E, Kamboj K, Balada-Llasat JM. Severe sepsis secondary to persistent Lysinibacillus sphaericus, Lysinibacillus fusiformis and Paenibacillus amylolyticus bacteremia. Int J Infect Dis. 2015;35:e93–5.

Rieg S, Bauer TM, Peyerl-Hoffmann G, Held J, Ritter W, Wagner D, et al. Paenibacillus larvae bacteremia in injection drug users. Emerg Infect Dis. 2010;16:487–9.

Ouyang J, Pei Z, Lutwick L, Dalai S, Yang L, Cassai N, et al. Case report: Paenibacillus thiaminolyticus: a new cause of human infection, inducing bacteremia in a patient on hemodialysis. Ann Clin Lab Sci. 2008;38:393–400.

Gopal N, Hill C, Ross PR, Beresford TP, Fenelon MA, Cotter PD. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Front Microbiol. 2015;6:1418.

Trmčić A, Martin NH, Boor KJ, Wiedmann M. A standard bacterial isolate set for research on contemporary dairy spoilage. J Dairy Sci. 2015;98:5806–17.

Moreno Switt AI, Andrus AD, Ranieri ML, Orsi RH, Ivy R, Den Bakker HC, et al. Genomic comparison of sporeforming bacilli isolated from milk. BMC Genom. 2014;15:1.

Sattin E, Andreani NA, Carraro L, Fasolato L, Balzan S, Novelli E, et al. Microbial dynamics during shelf-life of industrial Ricotta cheese and identification of a Bacillus strain as a cause of a pink discolouration. Food Microbiol. 2016;57:8–15.