Current experimental developments in 48 V-based CI-driven SUVs in response to expected future EU7 legislation

Gabriel Kühberger1, Hannes Wancura2, Lukas Nenning1, Eberhard Schutting1
1Institute of Internal Combustion Engines and Thermodynamics, Graz University of Technology, Graz, Austria
2AVL List GmbH, Graz, Austria

Tóm tắt

AbstractIn this paper, we describe experimental developments in an Exhaust Aftertreatment System (EAS) used in a four-cylinder Compression Ignition (CI) engine. To meet the carbon dioxide (CO$$_\mathrm {2}$$ 2 ) fleet limit values and to demonstrate a clean emission concept, the CI engine needs to be further developed in a hybridized, modern form before it can be included in the future fleet. In this work, the existing EAS was replaced by an Electrically Heated Catalyst (EHC) and a Selective Catalytic Reduction (SCR) double-dosing system. We focused specifically on calibrating the heating modes in tandem with the electric exhaust heating, which enabled us to develop an ultra-fast light-off concept. The paper first outlines the development steps, which were subsequently validated using the Worldwide harmonized Light-duty vehicles Test Cycle (WLTC). Then, based on the defined calibration, a sensitivity analysis was conducted by performing various dynamic driving cycles. In particular, we identified emission species that may be limited in the future, such as laughing gas (N$$_\mathrm {2}$$ 2 O), ammonia (NH$$_\mathrm {3}$$ 3 ), or formaldehyde (HCHO), and examined the effects of a general, additional decrease in the limit values, which may occur in the near future. This advanced emission concept can be applied when considering overall internal engine and external exhaust system measures. In our study, we demonstrate impressively low tailpipe (TP) emissions, but also clarify the system limits and the necessary framework conditions that ensure the applicability of this drivetrain concept in this sector.

Từ khóa


Tài liệu tham khảo

Demuycnk, J., Sileghem, L., Verhelst, S., Mendoza Villafuerte, P., Bosteels, D.: Insights for post-Euro 6 based on analysis of Euro 6d-TEMP PEMS data. In: International Transport and Air Pollution Conference Proceedings (2021)

Matzer, C., Weller, K., Dippold, M., Lipp, S., Röck, M., Rexeis, M., Hausberger, S.: Update of emission factors for HBEFA Version 4.1; Final re-port, I-05/19/CM EM-I-16/26/679 from 09.09.2019. TU Graz (2019)

Commission Regulation (EU) 2018/1832 Official Journal of the European Union L 301 (2018)

Commission Regulation (EU) 2019/631 Official Journal of the European Union L 111 (2019)

CLOVE Consortium LDV Exhaust. 9th AGVES-Meeting on 8th April 2021. (2021) https://circabc.europa.eu/d/a/workspace/SpacesStore/83a09cc8-7f8f-4ca6-9764-0b77da57d4cc/AGVES-2021-04-08-LDV_Exhaust.pdf. Accessed 26 July 2021

Brasseur, G.: Hochwirkungsgrad Hybridantrieb für nachhaltige. Elektromobilität (2020). https://doi.org/10.1553/0x003b46cd

Uhlmann, T., Alt, N., Lückmann, D., Balazs, A., Zwar, P., Müller, A., Thewes, M., Frese, J.: xHEV Concept achieving 2030 CO2 targets. In: 42nd Vienna Motor Symposium (2021)

Duesmann, M.: The next 50 years of “Vorsprung durch Technik”–how audi is shaping the mobility of the future. In: 42nd Vienna Motor Symposium (2021)

Demuynck, J., Bosteels, D., Bunar, F., Spitta, J.: Diesel passenger car with ultra-low NOx emissions in real driving conditions. MTZ Worldw. (2020). https://doi.org/10.1007/s38313-019-0151-8

Eichlseder, H., Hausberger, S., Beidl, C., Steinhaus, T.: Zero impact– objective and significance for vehicle powertrains and air quality. In: 8th International Engine Congress Baden-Baden (2021)

Mitterecker, H., Wieser, M., Weißbäck, M., Wancura, H.: Dieselmotor als wichtiger Baustein zur CO2-Flottenzielerreichung. MTZ Motortech Z. (2018). https://doi.org/10.1007/35146-018-0042-6

Krüger, M., Krüger, M., Kufferath, A., Naber, D., Schünemann, E.: Future Euro 7 / VII powertrains: challenges and feasibility. In: 42nd Vienna Motor Symposium (2021)

Fraidl, G., Enzi, B., Kapus, P., Martin, C., Rothbart, M.: Passenger car powertrains and future energy scenarios: from technical facts towards political reality. In: 42nd Vienna Motor Symposium (2021)

Pischinger, R., Klell, M., Sams, T.: Thermodynamik der Verbrennungskraftmaschine, vol. 3. Springer-Verlag, Wien (2009)

Mock, P., Díaz, S.: Pathways to decarbonization: The European passenger car market, 2021–2035. ICCT. (2021). https://theicct.org/sites/default/files/publications/decarbonize-EU-PVs-may2021.pdf. Accessed 14 July 2021

Ragon, P., Rodríguez, F.: Estimated cost of diesel emissions control technology to meet future Euro VII standards. ICCT. (2021). https://theicct.org/sites/default/files/publications/tech-cost-euro-vii-210428.pdf. Accessed 14 July 2021

Pramhas, J., Schutting, E., Bürgler, L.: Ladungswechselseitige Thermomanagementmaßnahmen für PKW-Dieselmotoren unter zukünftigen Randbedingungen. 6. MTZ-Fachtagung - Ladungswechsel im Verbrennungsmotor, Stuttgart (2013)

Demuynck, J., Favre, C., Bosteels, D., Kuhrt, A., Spitta, J., Bunar, F.: Ultra-low on-road NOx emissions of a 48V mild-hybrid diesel with LNT and dual-SCR. In: 10th Emission Control Conference, Dresden (2019)

Helbing, C., Köhne, M., Kassel, T., Herbst, T., Wietholt, B., Schleyer, J., Kraus, S., Düsterhöft, M., Groenendijk, A., Büchner, S., Stroscherer, J.: Making transport tasks clean and efficient - The new TDI engines in the Volkswagen commercial vehicles. In: 42nd Vienna Motor Symposium (2021)

Mera, Z., Matzer, C., Hausberger, S., Fonseca, N.: Performance of selective catalytic reduction (SCR) system in a diesel passenger car under real-world conditions. Appl. Thermal Eng. 181, 115983 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115983

Kellermayr, G.: Innermotorische Optimierungsmaßnahmen am Pkw-Dieselmotor hinsichtlich zukünftiger CO2-Ziele und Emissionsgesetzgebungen. Dissertation. Institute of Internal Combustion Engines and Thermodynamics. Graz University of Technology (2019)

Ratzberger, R.: Investigation of robust close-coupled diesel exhaust after treatment for passenger cars with 12V and 48V architecture. Dissertation. Institute of Internal Combustion Engines and Thermodynamics. Graz University of Technology (2018)

Kühberger, G., Schutting, E., Wancura, H., Wieser, M.: Electrification of PC diesel engines - interaction with exhaust gas after treatment. In: 17th Conference, The Working Process of the Internal Combustion Engine, Graz (2019)

Hofstetter, J., Boucharel, P., Atzler, F., Wachtmeister, G.: Fuel consumption and emission reduction for hybrid electric vehicles with electrically heated catalyst. SAE Int. J. Adv. Curr. Prac. Mobil. (2021). https://doi.org/10.4271/2020-37-0017

Ferreri, P., Cerrelli, G., Miao, Y., Pellegrino, S., Bianchi, L.: Conventional and electrically heated diesel oxidation catalyst physical based modeling. SAE Tech. Pap. (2018). https://doi.org/10.4271/2018-37-0010

Della Torre, A., Montenegro, G., Onorati, A., Cerri, T.: CFD investigation of the impact of electrical heating on the light-off of a diesel oxidation catalyst. SAE Tech. Pap. (2018). https://doi.org/10.4271/2018-01-0961

Commission Regulation (EU) 2016/427 Official Journal of the European Union L 82 (2016)

Wancura, H., Weißbäck, M., Abreu, I., Schäfer, T., Lange, S., Unterberger, B., Hoffmann, S.: From virtual to reality: How 48V systems and operating strategies improve Diesel emission. Stuttg. Int. Symp. (2019). https://doi.org/10.1007/978-3-658-25939-6_87

CLOVE Consortium Additional technical issues for Euro 7 LDV. 10th AGVES-Meeting on 27th April 2021. (2021). https://circabc.europa.eu/sd/a/451ffbfb-b095-41bc-a4df-1a15af9f1409/AGVES-2021-04-27-LDV_v7_final.pdf. Accessed 26 July 2021

CLOVE Consortium Preliminary findings on possible Euro 7 emission limits for LD and HD vehicles. 6th AGVES-Meeting on 27th October 2020. (2020). https://circabc.europa.eu/sd/a/fdd70a2d-b50a-4d0b-a92a-e64d41d0e947/CLOVE%20test%20limits%20AGVES%202020-10-27%20final%20vs2.pdf. Accessed 26 July 2021

Avolio, G., Brück, R., Grimm, J., Maiwald, O., Rösel, G., Zhang, H.: Super clean electrified diesel: Towards real NOx emissions below 35 mg/km. In: 27th Aachen Colloquium Automobile and Engine Technology (2018)

Demuynck, J., Kufferath, A., Kastner, O., Brauer, M., Fiebig, M.: Improving air quality and climate through modern diesel vehicles. MTZ Worldw. (2020). https://doi.org/10.1007/s38313-020-0266-y

Demuynck, J., Favre, C., Bosteels, D., Randlshofer, G., Bunar, F., Spitta, J., Friedrichs, O., Kuhrt, A., Brauer, M.: Integrated diesel system achieving ultra-low urban and motorway NOx emissions on the road. Vienna Motor Symp. (2019). https://doi.org/10.51202/9783186811127-I-198

Nenning, L., Eichlseder, H., Egert, M.: Cold emission optimization of a diesel- and alternative fuel-driven CI engine. Autom. Engine Technol. (2021). https://doi.org/10.1007/s41104-021-00089-y

Commission Regulation (EU) 2018/2001 Official Journal of the European Union L 328 (2018)

Mitterecker, H., Wancura, H., Weißbäck, M., Hoffmann, S.: Der elektrifizierte Diesel - Vom Konzept zur Fahrzeugintegration. MTZ Motortech Z. (2019). https://doi.org/10.1007/s35146-019-0119-x

Krüger, M., Bareiss, S., Kufferath, A., Naber, D., Ruff, D., Schumacher, H.: Further optimization of NOx emissions under the EU 6d regulation. Int. Stuttg. Symp. (2019). https://doi.org/10.1007/978-3-658-25939-6_68