Current Challenges in Antimicrobial Chemotherapy

Drugs - Tập 70 - Trang 651-679 - 2012
Carine Bebrone1, Patricia Lassaux1, Lionel Vercheval1, Jean-Sébastien Sohier1, Adrien Jehaes1, Eric Sauvage2, Moreno Galleni1
1Centre for Protein Engineering/Biological Macromolecules, University of Liège, Liège, Belgium
2Laboratory of Macromolecular Crystallography, Centre for Protein Engineering, University of Liège, Liège, Belgium

Tóm tắt

The use of the three classical β-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam) in combination with β-lactam antibacterials is currently the most successful strategy to combat β-lactamase-mediated resistance. However, these inhibitors are efficient in inactivating only class A β-lactamases and the efficiency of the inhibitor/antibacterial combination can be compromised by several mechanisms, such as the production of naturally resistant class B or class D enzymes, the hyperproduction of AmpC or even the production of evolved inhibitor-resistant class A enzymes. Thus, there is an urgent need for the development of novel inhibitors. For serine active enzymes (classes A, C and D), derivatives of the β-lactam ring such as 6-β-halogenopenicillanates, β-lactam sulfones, penems and oxapenems, monobactams or trinems seem to be potential starting points to design efficient molecules (such as AM-112 and LK-157). Moreover, a promising non-β-lactam molecule, NXL-104, is now under clinical development. In contrast, an ideal inhibitor of metallo-β-lactamases (class B) remains to be found, despite the huge number of potential molecules already described (biphenyl tetrazoles, cysteinyl peptides, mercaptocarboxylates, succinic acid derivatives, etc.). The search for such an inhibitor is complicated by the absence of a covalent intermediate in their catalytic mechanisms and the fact that β-lactam derivatives often behave as substrates rather than as inhibitors. Currently, the most promising broad-spectrum inhibitors of class B enzymes are molecules presenting chelating groups (thiols, carboxylates, etc.) combined with an aromatic group. This review describes all the types of molecules already tested as potential β-lactamase inhibitors and thus constitutes an update of the current status in β-lactamase inhibitor discovery.

Tài liệu tham khảo

Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 1980 May 16; 289(1036): 321–31 Jaurin B, Grundstrom T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci U S A 1981 Aug; 78(8): 4897–901 Ouellette M, Bissonnette L, Roy PH. Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 beta-lactamase gene. Proc Natl Acad Sci U S A 1987 Nov; 84(21): 7378–82 Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010 Mar; 54(3): 969–76 Kelly JA, Dideberg O, Charlier P, et al. On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science 1986 Mar 21; 231(4744): 1429–31 Samraoui B, Sutton BJ, Todd RJ, et al. Tertiary structural similarity between a class A beta-lactamase and a penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase. Nature 1986 Mar 27–Apr 2; 320(6060): 378–80 Joris B, Ghuysen JM, Dive G, et al. The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem J 1988 Mar 1; 250(2): 313–24 Joris B, Ledent P, Dideberg O, et al. Comparison of the sequences of class A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob Agents Chemother 1991 Nov; 35(11): 2294–301 Tzouvelekis LS, Tzelepi E, Tassios PT, et al. CTX-M-type beta-lactamases: an emerging group of extended-spectrum enzymes. Int J Antimicrob Agents 2000 Mar; 14(2): 137–42 Jacobs C, Joris B, Jamin M, et al. AmpD, essential for both beta-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol Microbiol 1995 Feb; 15(3): 553–9 Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009 Jan; 22(1): 161–82 Bradford PA, Urban C, Mariano N, et al. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein. Antimicrob Agents Chemother 1997 Mar; 41(3): 563–9 Ledent P, Raquet X, Joris B, et al. A comparative study of class-D beta-lactamases. Biochem J 1993 Jun 1; 292 (Pt 2): 555–62 Naas T, Sougakoff W, Casetta A, et al. Molecular characterization of OXA-20, a novel class D beta-lactamase, and its integron from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998 Aug; 42(8): 2074–83 Bou G, Oliver A, Martinez-Beltran J. OXA-24, a novel class D beta-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob Agents Chemother 2000 Jun; 44(6): 1556–61 Golemi D, Maveyraud L, Vakulenko S, et al. Critical involvement of a carbamylated lysine in catalytic function of class D beta-lactamases. Proc Natl Acad Sci U S A 2001 Dec 4; 98(25): 14280–5 Schneider KD, Bethel CR, Distler AM, et al. Mutation of the active site carboxy-lysine (K70) of OXA-1 beta-lactamase results in a deacylation-deficient enzyme. Biochemistry 2009 Jul 7; 48(26): 6136–45 Daiyasu H, Osaka K, Ishino Y, et al. Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett 2001 Aug 10; 503(1): 1–6 Rasmussen BA, Gluzman Y, Tally FP. Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL 3636. Antimicrob Agents Chemother 1990 Aug; 34(8): 1590–2 Watanabe M, Iyobe S, Inoue M, et al. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991 Jan; 35(1): 147–51 Osano E, Arakawa Y, Wacharotayankun R, et al. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother 1994 Jan; 38(1): 71–8 Rossolini GM, Franceschini N, Riccio ML, et al. Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B beta-lactamase showing a broad substrate profile. Biochem J 1998 May 15; 332 (Pt 1): 145–52 Chen Y, Succi J, Tenover FC, et al. Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J Bacteriol 2003 Feb; 185(3): 823–30 Walsh F, Bracher S, Turner P, et al. Preferential selection of IMP and VIM metallo-beta-lactamases by imipenem in Pseudomonas aeruginosa. Chemotherapy 2007; 53(6): 407–9 Galleni M, Lamotte-Brasseur J, Rossolini GM, et al. Standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother 2001 Mar; 45(3): 660–3 Garau G, Garcia-Saez I, Bebrone C, et al. Update of the standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother 2004 Jul; 48(7): 2347–9 Frere JM, Galleni M, Bush K, et al. Is it necessary to change the classification of s betas-lactamases? J Antimicrob Chemother 2005 Jun; 55(6): 1051–3 Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 2007 Dec 15; 74(12): 1686–701 Reading C, Cole M. Clavulanic acid: a beta-lactamaseinhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 1977 May; 11(5): 852–7 Neu HC, Fu KP. Clavulanic acid, a novel inhibitor of beta-lactamases. Antimicrob Agents Chemother 1978 Nov; 14(5): 650–5 Durkin JP, Viswanatha T. Clavulanic acid inhibition of beta-lactamase I from Bacillus cereus 569/H. J Antibiot (Tokyo) 1978 Nov; 31(11): 1162–9 Marunaka T, Maniwa M, Matsushima E, et al. High-performance liquid chromatographic determination of a new beta-lactamase inhibitor and its metabolite in combination therapy with piperacillin in biological materials. J Chromatogr 1988 Sep 23; 431(1): 87–101 Moosdeen F, Williams JD, Yamabe S. Antibacterial characteristics of YTR 830, a sulfone beta-lactamase inhibitor, compared with those of clavulanic acid and sulbactam. Antimicrob Agents Chemother 1988 Jun; 32(6): 925–7 Moosdeen F, Williams J, Yamabe S. The activity of a sulphone beta-lactamase inhibitor, YTR 830. Chemioterapia 1987 Jun; 6 (2 Suppl.): 206–7 Appelbaum PC, Jacobs MR, Spangler SK, et al. Comparative activity of beta-lactamase inhibitors YTR 830, clavulanate, and sulbactam combined with beta-lactams against beta-lactamase-producing anaerobes. Antimicrob Agents Chemother 1986 Nov; 30(5): 789–91 Aronoff SC, Jacobs MR, Labrozzi PH, et al. Synergy of amoxycillin combined with clavulanate and YTR 830 in experimental infections in mice. J Antimicrob Chemother 1986 Aug; 18(2): 271–6 Gutmann L, Kitzis MD, Yamabe S, et al. Comparative evaluation of a new beta-lactamase inhibitor, YTR 830, combined with different beta-lactam antibiotics against bacteria harboring known beta-lactamases. Antimicrob Agents Chemother 1986 May; 29(5): 955–7 Totir MA, Cha J, Ishiwata A, et al. Why clinically used tazobactam and sulbactam are poor inhibitors of OXA-10 beta-lactamase: Raman crystallographic evidence. Biochemistry 2008 Apr 1; 47(13): 4094–101 Paukner S, Hesse L, Prezelj A, et al. In vitro activity of LK-157, a novel tricyclic carbapenem as broad-spectrum s betas-lactamase inhibitor. Antimicrob Agents Chemother 2009 Feb; 53(2): 505–11 Buynak JD, Ghadachanda VR, Vogeti L, et al. Synthesis and evaluation of 3-(carboxymethylidene)- and 3-(carboxymethyl)penicillinates as inhibitors of beta-lactamase. J Org Chem 2005 May 27; 70(11): 4510–3 Buynak JD, Chen H, Vogeti L, et al. Penicillin-derived inhibitors that simultaneously target both metallo- and serine-beta-lactamases. Bioorg Med Chem Lett 2004 Mar 8; 14(5): 1299–304 Buynak JD, Rao AS, Doppalapudi VR, et al. The synthesis and evaluation of 6-alkylidene-2’beta-substituted penam sulfones as beta-lactamase inhibitors. Bioorg Med Chem Lett 1999 Jul 19; 9(14): 1997–2002 Coleman K, Griffin DRJ, Page JWJ, et al. In vitro evaluation of BRL 42715, a novel beta-lactamase inhibitor. Antimicrob Agents Chemother 1989; 33: 1580–7 Nukaga M, Abe T, Venkatesan AM, et al. Inhibition of class A and class C beta-lactamases by penems: crystal-lographic structures of a novel 1,4-thiazepine intermediate. Biochemistry 2003 Nov 18; 42(45): 13152–9 Venkatesan AM, Agarwal A, Abe T, et al. Structure-activity relationship of 6-methylidene penems bearing 6,5 bicyclic heterocycles as broad-spectrum beta-lactamase inhibitors: evidence for 1,4-thiazepine intermediates with C7 R stereochemistry by computational methods. J Med Chem 2006 Jul 27; 49(15): 4623–37 Weiss WJ, Petersen PJ, Murphy TM, et al. In vitro and in vivo activities of novel 6-methylidene penems as beta-lactamase inhibitors. Antimicrob Agents Chemother 2004 Dec; 48(12): 4589–96 Venkatesan AM, Agarwal A, Abe T, et al. 5,5,6-Fused tricycles bearing imidazole and pyrazole 6-methylidene penems as broad-spectrum inhibitors of beta-lactamases. Bioorg Med Chem 2008 Feb 15; 16(4): 1890–902 Jamieson CE, Lambert PA, Simpson IN. In vitro and in vivo activities of AM-112, a novel oxapenem. Antimicrob Agents Chemother 2003 May; 47(5): 1652–7 Nishida K, Kunugita C, Uji T, et al. In vitro and in vivo activities of Syn2190, a novel beta-lactamase inhibitor. Antimicrob Agents Chemother 1999 Aug; 43(8): 1895–900 Grant EB, Guiadeen D, Baum EZ, et al. The synthesis and SAR of rhodanines as novel class C beta-lactamase inhibitors. Bioorg Med Chem Lett 2000 Oct 2; 10(19): 2179–82 Bonnefoy A, Dupuis-Hamelin C, Steier V, et al. In vitro activity of AVE1330A, an innovative broad-spectrum non-beta-lactam beta-lactamase inhibitor. J Antimicrob Chemother 2004 Aug; 54(2): 410–7 Philippon LN, Naas T, Bouthors AT, et al. OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1997 Oct; 41(10): 2188–95 Akova M, Yang YJ, Livermore DM. Interactions of tazobactam and clavulanate with inducibly-expressed and constitutively-expressed class-I beta-lactamases. J Antimicrob Chemother 1990; 25(2): 199–208 Prosperi-Meys C, Llabres G, de Seny D, et al. Interaction between class B beta-lactamases and suicide substrates of active-site serine beta-lactamases. FEBS Lett 1999 Jan 25; 443(2): 109–11 Strateva T, Yordanov D. Pseudomonas aeruginosa: a phenomenon of bacterial resistance. J Med Microbiol 2009 Sep; 58 (Pt 9): 1133–48 Martinez JL, Blazquez J, Vicente MF, et al. Influence of gene dosing on antibiotic resistance mediated by inactivating enzymes. J Chemother 1989 Jul; 1 (4 Suppl.): 265–6 Reguera JA, Baquero F, Perez-Diaz JC, et al. Factors determining resistance to beta-lactam combined with beta-lactamase inhibitors in Escherichia coli. J Antimicrob Chemother 1991 May; 27(5): 569–75 Xiang X, Shannon K, French G. Mechanism and stability of hyperproduction of the extended-spectrum beta-lactamase SHV-5 in Klebsiella pneumoniae. J Antimicrob Chemother 1997 Oct; 40(4): 525–32 Rice LB, Carias LL, Hujer AM, et al. High-level expression of chromosomally encoded SHV-1 beta-lactamase and an outer membrane protein change confer resistance to ceftazidime and piperacillin-tazobactam in a clinical isolate of Klebsiella pneumoniae. Antimicrob Agents Chemother 2000 Feb; 44(2): 362–7 Li XZ, Zhang L, Srikumar R, et al. Beta-lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998 Feb; 42(2): 399–403 Nakae T, Saito K, Nakajima A. Effect of sulbactam on anti-pseudomonal activity of beta-lactam antibiotics in cells producing various levels of the MexAB-OprM efflux pump and beta-lactamase. Microbiol Immunol 2000; 44(12): 997–1001 Livermore DM, Akova M, Wu PJ, et al. Clavulanate and beta-lactamase induction. J Antimicrob Chemother 1989 Nov; 24 Suppl. B: 23–33 Lister PD, Gardner VM, Sanders CC. Clavulanate induces expression of the Pseudomonas aeruginosa AmpC cephalosporinase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Antimicrob Agents Chemother 1999 Apr; 43(4): 882–9 Henquell C, Chanal C, Sirot D, et al. Molecular characterization of nine different types of mutants among 107 inhibitor-resistant TEM beta-lactamases from clinical isolates of Escherichia coli. Antimicrob Agents Chemother 1995 Feb; 39(2): 427–30 Canica MM, Lu CY, Krishnamoorthy R, et al. Molecular diversity and evolution of blaTEM genes encoding beta-lactamases resistant to clavulanic acid in clinical E. coli. J Mol Evol 1997 Jan; 44(1): 57–65 Knox JR. Extended-spectrum and inhibitor-resistant TEM-type beta-lactamases: mutations, specificity, and three-dimensional structure. Antimicrob Agents Chemother 1995 Dec; 39(12): 2593–601 Lahey Clinic. β-Lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes [online]. Available from URL: http://www.lahey.org/Studies/ [Accessed 2010 Feb 10] Chaibi EB, Sirot D, Paul G, et al. Inhibitor-resistant TEM beta-lactamases: phenotypic, genetic and biochemical characteristics. J Antimicrob Chemother 1999 Apr; 43(4): 447–58 Blazquez J, Baquero MR, Canton R, et al. Characterization of a new TEM-type beta-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrob Agents Chemother 1993 Oct; 37(10): 2059–63 Wong JS, Mohd Azri ZA, Subramaniam G, et al. Beta-lactam resistance phenotype determination in Escherichia coli isolates from University Malaya Medical Centre. Malays J Pathol 2003 Dec; 25(2): 113–9 Kaye KS, Gold HS, Schwaber MJ, et al. Variety of beta-lactamases produced by amoxicillin-clavulanate-resistant Escherichia coli isolated in the northeastern United States. Antimicrob Agents Chemother 2004 May; 48(5): 1520–5 Bradford PA, Bratu S, Urban C, et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis 2004 Jul 1; 39(1): 55–60 Sirot D, Recule C, Chaibi EB, et al. A complex mutant of TEM-1 beta-lactamase with mutations encountered in both IRT-4 and extended-spectrum TEM-15, produced by an Escherichia coli clinical isolate. Antimicrob Agents Chemother 1997 Jun; 41(6): 1322–5 Canton R, Morosini MI, de la Maza OM, et al. IRT and CMT beta-lactamases and inhibitor resistance. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1: 53–62 Ishii Y, Galleni M, Ma L, et al. Biochemical characterisation of the CTX-M-14 beta-lactamase. Int J Antimicrob Agents 2007 Feb; 29(2): 159–64 Ibuka AS, Ishii Y, Galleni M, et al. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Biochemistry 2003 Sep 16; 42(36): 10634–43 Knott-Hunziker V, Orlek BS, Sammes PG, et al. 6 beta-Bromopenicillanic acid inactivates beta-lactamase I. Biochem J 1979 Jan 1; 177(1): 365–7 Knott-Hunziker V, Waley SG, Orlek BS, et al. Penicillinase active sites: labelling of serine-44 in beta-lactamase I by 6beta-bromopenicillanic acid. FEBS Lett 1979 Mar 1; 99(1): 59–61 Pratt RF, Loosemore MJ. 6-beta-Bromopenicillanic acid, a potent beta-lactamase inhibitor. Proc Natl Acad Sci U S A 1978 Sep; 75(9): 4145–9 Frere JM, Kelly JA, Klein D, et al. Delta 2- and delta 3-cephalosporins, penicillinate and 6-unsubstituted penems: intrinsic reactivity and interaction with beta-lactamases and D-alanyl-D-alanine-cleaving serine peptidases. Biochem J 1982 Apr 1; 203(1): 223–34 Neu HC. β-Lactamase inhibitory activity of iodopenicillanate and bromopenicillanate. Antimicrob Agents Chemother 1983 Jan; 23(1): 63–6 Sauvage E, Zervosen A, Dive G, et al. Structural basis of the inhibition of class A beta-lactamases and penicillin-binding proteins by 6-beta-iodopenicillanate. J Am Chem Soc 2009 Oct 28; 131(42): 15262–9 Cierpucha M, Panfil I, Danh TT, et al. Synthesis of 3-Substituted-clavams: antifungal properties, DD-peptidase and beta-lactamase inhibition. J Antibiot (Tokyo) 2007 Oct; 60(10): 622–32 Knight GC, Waley SG. Inhibition of class C beta-lactamases by (1′R,6R)-6-(1′-hydroxy)benzylpenicillanic acid SS-dioxide. Biochem J 1985 Jan 15; 225(2): 435–9 Jones RN, Johnson DM. Comparative in vitro activity of apalcillin alone and combined with Ro 48–1220, a novel penam beta-lactamase inhibitor. Clin Microbiol Infect 1995 Feb; 1(2): 86–100 Richter HG, Angehrn P, Hubschwerlen C, et al. Design, synthesis, and evaluation of 2 beta-alkenyl penam sulfone acids as inhibitors of beta-lactamases. J Med Chem 1996 Sep 13; 39(19): 3712–22 Tzouvelekis LS, Gazouli M, Prinarakis EE, et al. Comparative evaluation of the inhibitory activities of the novel penicillanic acid sulfone Ro 48–1220 against beta-lactamases that belong to groups 1, 2b, and 2be. Antimicrob Agents Chemother 1997 Feb; 41(2): 475–7 Bitha P, Li Z, Francisco GD, et al. 6-(1-Hydroxyalkyl) penam sulfone derivatives as inhibitors of class A and class C beta-lactamases I. Bioorg Med Chem Lett 1999 Apr 5; 9(7): 991–6 Beharry Z, Chen H, Gadhachanda VR, et al. Evaluation of penicillin-based inhibitors of the class A and B beta-lactamases from Bacillus anthracis. Biochem Biophys Res Commun 2004 Jan 16; 313(3): 541–5 Crichlow GV, Nukaga M, Doppalapudi VR, et al. Inhibition of class C beta-lactamases: structure of a reaction intermediate with a cephem sulfone. Biochemistry 2001 May 29; 40(21): 6233–9 Buynak JD, Doppalapudi VR, Rao AS, et al. The synthesis and evaluation of 2-substituted-7-(alkylidene)cephalosporin sulfones as beta-lactamase inhibitors. Bioorg Med Chem Lett 2000 May 1; 10(9): 847–51 Buynak JD, Doppalapudi VR, Adam G. The synthesis and evaluation of 3-substituted-7-(alkylidene)cephalosporin sulfones as beta-lactamase inhibitors. Bioorg Med Chem Lett 2000 May 1; 10(9): 853–7 Padayatti PS, Sheri A, Totir MA, et al. Rational design of a beta-lactamase inhibitor achieved via stabilization of the trans-enamine intermediate: 1.28 A crystal structure of wt SHV-1 complex with a penam sulfone. J Am Chem Soc 2006 Oct 11; 128(40): 13235–42 Helfand MS, Taracila MA, Totir MA, et al. Raman crystallographic studies of the intermediates formed by Ser130Gly SHV, a beta-lactamase that confers resistance to clinical inhibitors. Biochemistry 2007 Jul 24; 46(29): 8689–99 Kalp M, Sheri A, Buynak JD, et al. Efficient inhibition of class A and class D beta-lactamases by Michaelis complexes. J Biol Chem 2007 Jul 27; 282(30): 21588–91 Pattanaik P, Bethel CR, Hujer AM, et al. Strategic design of an effective beta-lactamase inhibitor: LN-1-255, a 6-alkylidene-2′-substituted penicillin sulfone. J Biol Chem 2009 Jan 9; 284(2): 945–53 Bethel CR, Distler AM, Ruszczycky MW, et al. Inhibition of OXA-1 beta-lactamase by penems. Antimicrob Agents Chemother 2008 Sep; 52(9): 3135–43 Perumal SK, Adediran SA, Pratt RF. Beta-ketophosphonates as beta-lactamase inhibitors: intramolecular cooperativity between the hydrophobic subsites of a class D beta-lactamase. Bioorg Med Chem 2008 Jul 15; 16(14): 6987–94 Morandi S, Morandi F, Caselli E, et al. Structure-based optimization of cephalothin-analogue boronic acids as beta-lactamase inhibitors. Bioorg Med Chem 2008 Feb 1; 16(3): 1195–205 Chen Y, Shoichet B, Bonnet R. Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases. J Am Chem Soc 2005 Apr 20; 127(15): 5423–34 Kumar S, Pearson AL, Pratt RF. Design, synthesis, and evaluation of alpha-ketoheterocycles as class C beta-lactamase inhibitors. Bioorg Med Chem 2001 Aug; 9(8): 2035–44 Powers RA, Morandi F, Shoichet BK. Structure-based discovery of a novel, noncovalent inhibitor of AmpC beta-lactamase. Structure 2002 Jul; 10(7): 1013–23 Babaoglu K, Simeonov A, Irwin JJ, et al. Comprehensive mechanistic analysis of hits from high-throughput and docking screens against beta-lactamase. J Med Chem 2008 Apr 24; 51(8): 2502–11 Nagano R, Adachi Y, Imamura H, et al. Carbapenem derivatives as potential inhibitors of various beta-lactamases, including class B metallo-beta-lactamases. Antimicrob Agents Chemother 1999 Oct; 43(10): 2497–503 Strynadka NC, Jensen SE, Johns K, et al. Structural and kinetic characterization of a beta-lactamase-inhibitor protein. Nature 1994 Apr 14; 368(6472): 657–60 Huang W, Beharry Z, Zhang Z, et al. A broad-spectrum peptide inhibitor of beta-lactamase identified using phage display and peptide arrays. Protein Eng 2003 Nov; 16(11): 853–60 Matagne A, Ledent P, Monnaie D, et al. Kinetic study of interaction between BRL 42715, beta-lactamases, and D-alanyl-D-alanine peptidases. Antimicrob Agents Chemother 1995 Jan; 39(1): 227–31 Coleman K, Griffin DR, Page JW, et al. In vitro evaluation of BRL 42715, a novel beta-lactamase inhibitor. Antimicrob Agents Chemother 1989 Sep; 33(9): 1580–7 Phillips OA, Czajkowski DP, Spevak P, et al. SYN-1012: a new beta-lactamase inhibitor of penem skeleton. J Antibiot (Tokyo) 1997 Apr; 50(4): 350–6 Venkatesan AM, Agarwal A, Abe T, et al. Novel imidazole substituted 6-methylidene-penems as broad-spectrum beta-lactamase inhibitors. Bioorg Med Chem 2004 Nov 15; 12(22): 5807–17 Venkatesan AM, Gu Y, Dos Santos O, et al. Structureactivity relationship of 6-methylidene penems bearing tricyclic heterocycles as broad-spectrum beta-lactamase inhibitors: crystallographic structures show unexpected binding of 1, 4-thiazepine intermediates. J Med Chem 2004 Dec 16; 47(26): 6556–68 Toney JH, Fitzgerald PM, Grover-Sharma N, et al. Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-beta-lactamase. Chem Biol 1998 Apr; 5(4): 185–96 Nauton L, Kahn R, Garau G, et al. Structural insights into the design of inhibitors for the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia. J Mol Biol 2008 Jan 4; 375(1): 257–69 Concha NO, Janson CA, Rowling P, et al. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 2000 Apr 18; 39(15): 4288–98 Toney JH, Hammond GG, Fitzgerald PM, et al. Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-beta-lactamase. J Biol Chem 2001 Aug 24; 276(34): 31913–8 Olsen L, Jost S, Adolph HW, et al. New leads of metallobeta-lactamase inhibitors from structure-based pharmacophore design. Bioorg Med Chem 2006 Apr 15; 14(8): 2627–35 Payne DJ, Hueso-Rodriguez JA, Boyd H, et al. Identification of a series of tricyclic natural products as potent broad-spectrum inhibitors of metallo-beta-lactamases. Antimicrob Agents Chemother 2002 Jun; 46(6): 1880–6 Petersen PJ, Jones CH, Venkatesan AM, et al. Efficacy of piperacillin combined with the Penem s betas -lactamase inhibitor BLI-489 in murine models of systemic infection. Antimicrob Agents Chemother 2009 Apr; 53(4): 1698–700 Petersen PJ, Jones CH, Venkatesan AM, et al. Establishment of in vitro susceptibility testing methodologies and comparative activities of piperacillin in combination with the penem beta-lactamase inhibitor BLI-489. Antimicrob Agents Chemother 2009 Feb; 53(2): 370–84 Jamieson CE, Lambert PA, Simpson IN. In vitro activities of novel oxapenems, alone and in combination with ceftazidime, against gram-positive and gram-negative organisms. Antimicrob Agents Chemother 2003 Aug; 47(8): 2615–8 Bowker KE, Noel AR, Walsh TR, et al. Pharmacodynamics of ceftazidime plus the serine beta-lactamase inhibitor AM-112 against Escherichia coli containing TEM-1 and CTX-M-1 beta-lactamases. Antimicrob Agents Chemother 2004 Nov; 48(11): 4482–4 Amura Holdings Ltd. β-lactamase inhibitors [online]. Available from URL: http://www.amura.co.uk/β-lactamaseinhibitors.asp [Accessed 2010 Mar 11] Heinze-Krauss I, Angehrn P, Charnas RL, et al. Structure-based design of beta-lactamase inhibitors. 1. Synthesis and evaluation of bridged monobactams. J Med Chem 1998 Oct 8; 41(21): 3961–71 Livermore DM, Chen HY. Potentiation of beta-lactams against Pseudomonas aeruginosa strains by Ro 48-1256, a bridged monobactam inhibitor of AmpC beta-lactamases. J Antimicrob Chemother 1997 Sep; 40(3): 335–43 Mourey L, Kotra LP, Bellettini J, et al. Inhibition of the broad spectrum nonmetallocarbapenamase of class A (NMC-A) beta-lactamase from Enterobacter cloacae by monocyclic beta-lactams. J Biol Chem 1999 Sep 3; 274(36): 25260–5 Bulychev A, O’Brien ME, Massova I, et al. Potent mechanism-based inhibition of the TEM-1 beta-lactamase by novel N-sulfonyloxy beta-lactams. J Am Chem Soc 1995 117: 5938–43 Netzel TC, Jindani I, Hanson N, et al. The AmpC inhibitor, Syn2190, can be used to reveal extended-spectrum beta-lactamases in Escherichia coli. Diagn Microbiol Infect Dis 2007 Jul; 58(3): 345–8 Danes C, Navia MM, Ruiz J, et al. Distribution of beta-lactamases in Acinetobacter baumannii clinical isolates and the effect of Syn 2190 (AmpC inhibitor) on the MICs of different beta-lactam antibiotics. J Antimicrob Chemother 2002 Aug; 50(2): 261–4 Babini GS, Livermore DM. Effect of conalbumin on the activity of Syn 2190, a 1, 5 dihydroxy-4-pyridon monobactam inhibitor of AmpC beta-lactamases. J Antimicrob Chemother 2000 Jan; 45(1): 105–9 Plantan I, Selic L, Mesar T, et al. 4-Substituted trinems as broad spectrum beta-lactamase inhibitors: structure-based design, synthesis, and biological activity. J Med Chem 2007 Aug 23; 50(17): 4113–21 Iglicar P, Legen I, Vilfan G, et al. Permeability of a novel beta-lactamase inhibitor LK-157 and its ester prodrugs across rat jejunum in vitro. J Pharm Pharmacol 2009 Sep; 61(9): 1211–8 Pratt RF. Inhibition of a class C beta-lactamase by a specific phosphonate monoester. Science 1989 Nov 17; 246(4932): 917–9 Rahil J, Pratt RF. Phosphonate monoester inhibitors of class A beta-lactamases. Biochem J 1991 May 1; 275 (Pt 3): 793–5 Rahil J, Pratt RF. Mechanism of inhibition of the class C beta-lactamase of Enterobacter cloacae P99 by phosphonate monoesters. Biochemistry 1992 Jun 30; 31(25): 5869–78 Lobkovsky E, Billings EM, Moews PC, et al. Crystal-lographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog. Biochemistry 1994 Jun 7; 33(22): 6762–72 Kaur K, Lan MJ, Pratt RF. Mechanism of inhibition of the class C beta-lactamase of Enterobacter cloacae P99 by cyclic acyl phosph(on)ates: rescue by return. J Am Chem Soc 2001 Oct 31; 123(43): 10436–43 Kaur K, Pratt RF. Mechanism of reaction of acyl phosph(on)ates with the beta-lactamase of Enterobacter cloacae P 99. Biochemistry 2001 Apr 17; 40(15): 4610–21 Li N, Rahil J, Wright ME, et al. Structure-activity studies of the inhibition of serine beta-lactamases by phosphonate monoesters. Bioorg Med Chem 1997 Sep; 5(9): 1783–8 Kaur K, Adediran SA, Lan MJ, et al. Inhibition of beta-lactamases by monocyclic acyl phosph(on)ates. Biochemistry 2003 Feb 18; 42(6): 1529–36 Adediran SA, Nukaga M, Baurin S, et al. Inhibition of class D beta-lactamases by acyl phosphates and phosphonates. Antimicrob Agents Chemother 2005 Oct; 49(10): 4410–2 Rawn JD, Lienhard GE. The binding of boronic acids to chymotrypsin. Biochemistry 1974 Jul 16; 13(15): 3124–30 Kiener PA, Waley SG. Reversible inhibitors of penicillinases. Biochem J 1978 Jan 1; 169(1): 197–204 Morandi F, Caselli E, Morandi S, et al. Nanomolar inhibitors of AmpC beta-lactamase. J Am Chem Soc 2003 Jan 22; 125(3): 685–95 Wouters J, Fonze E, Vermeire M, et al. Crystal structure of Enterobacter cloacae 908R class C beta-lactamase bound to iodo-acetamido-phenyl boronic acid, a transition-state analogue. Cell Mol Life Sci 2003 Aug; 60(8): 1764–73 Buzzoni V, Blazquez J, Ferrari S, et al. Aza-boronic acids as non-beta-lactam inhibitors of AmpC-beta-lactamase. Bioorg Med Chem Lett 2004 Aug 2; 14(15): 3979–83 Delmas J, Chen Y, Prati F, et al. Structure and dynamics of CTX-M enzymes reveal insights into substrate accommodation by extended-spectrum beta-lactamases. J Mol Biol 2008 Jan 4; 375(1): 192–201 Venturelli A, Tondi D, Cancian L, et al. Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy. J Med Chem 2007 Nov 15; 50(23): 5644–54 Pasteran FG, Otaegui L, Guerriero L, et al. Klebsiella pneumoniae Carbapenemase-2, Buenos Aires, Argentina. Emerg Infect Dis 2008 Jul; 14(7): 1178–80 Doi Y, Potoski BA, Adams-Haduch JM, et al. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type beta-lactamase by use of a boronic acid compound. J Clin Microbiol 2008 Dec; 46(12): 4083–6 Tsakris A, Poulou A, Themeli-Digalaki K, et al. Use of boronic acid disk tests to detect extended-spectrum beta-lactamases in clinical isolates of KPC carbapenemase-possessing Enterobacteriaceae. J Clin Microbiol 2009 Nov; 47(11): 3420–6 Tsakris A, Kristo I, Poulou A, et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol 2009 Feb; 47(2): 362–7 Pasteran F, Mendez T, Guerriero L, et al. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol 2009 Jun; 47(6): 1631–9 Adediran SA, Pratt RF. Inhibition of serine beta-lactamases by vanadate-catechol complexes. Biochemistry 2008 Sep 9; 47(36): 9467–74 Wyrembak PN, Babaoglu K, Pelto RB, et al. O-aryloxycarbonyl hydroxamates: new beta-lactamase inhibitors that cross-link the active site. J Am Chem Soc 2007 Aug 8; 129(31): 9548–9 Pelto RB, Pratt RF. Kinetics and mechanism of inhibition of a serine beta-lactamase by O-aryloxycarbonyl hydroxamates. Biochemistry 2008 Nov 18; 47(46): 12037–46 Ganta SR, Perumal S, Pagadala SR, et al. Approaches to the simultaneous inactivation of metallo- and serine-beta-lactamases. Bioorg Med Chem Lett 2009 Mar 15; 19(6): 1618–22 Rudgers GW, Huang W, Palzkill T. Binding properties of a peptide derived from beta-lactamase inhibitory protein. Antimicrob Agents Chemother 2001 Dec; 45(12): 3279–86 Conrath KE, Lauwereys M, Galleni M, et al. Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob Agents Chemother 2001 Oct; 45(10): 2807–12 Frank R. SPOT-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 1992; 48: 9217–32 Coates NJ, Gilpin ML, Gwynn MN, et al. SB-202742, a novel beta-lactamase inhibitor isolated from Spondias mombin. J Nat Prod 1994 May; 57(5): 654–7 Gangoue-Pieboji J, Baurin S, Frere JM, et al. Screening of some medicinal plants from Cameroon for beta-lactamase inhibitory activity. Phytother Res 2007 Mar; 21(3): 284–7 Vinod NV, Shijina R, Dileep KV, et al. Inhibition of beta-lactamase by 1, 4-naphthalenedione from the plant Holoptelea integrifolia. Appl Biochem Biotechnol. Epub 2009 May 9 Tanizawa K, Santoh K, Kanaoka Y. Diketene analogs as beta-lactamase inhibitor. Chem Pharm Bull (Tokyo) 1989 Mar; 37(3): 824–5 Bush K, Bonner DP, Sykes RB. Izumenolide: a novel beta-lactamase inhibitor produced by Micromonospora. II: biological properties. J Antibiot (Tokyo) 1980 Nov; 33(11): 1262–9 Schenkein DP, Pratt RF. Phenylpropynal, a specific, irreversible, non-beta-lactam inhibitor of beta-lactamases. J Biol Chem 1980 Jan 10; 255(1): 45–8 Tondi D, Morandi F, Bonnet R, et al. Structure-based optimization of a non-beta-lactam lead results in inhibitors that do not up-regulate beta-lactamase expression in cell culture. J Am Chem Soc 2005 Apr 6; 127(13): 4632–9 Beck J, Vercheval L, Bebrone C, et al. Discovery of novel lipophilic inhibitors of OXA-10 enzyme (class D beta-lactamase) by screening amino analogs and homologs of citrate and isocitrate. Bioorg Med Chem Lett 2009 Jul 1; 19(13): 3593–7 Stachyra T, Levasseur P, Pechereau MC, et al. In vitro activity of the s betas -lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother 2009 Aug; 64(2): 326–9 Livermore DM, Mushtaq S, Warner M, et al. NXL104 combinations versus Enterobacteriaceae with CTX-M extended-spectrum beta-lactamases and carbapenemases. J Antimicrob Chemother 2008 Nov; 62(5): 1053–6 Irwin JJ, Shoichet BK. ZINC: a free database of commercially available compounds for virtual screening. J Chem Inf Model 2005; 45: 177–82 Teotico DG, Babaoglu K, Rocklin GJ, et al. Docking for fragment inhibitors of AmpC beta-lactamase. Proc Natl Acad Sci U S A 2009 May 5; 106(18): 7455–60 Garau G, Bebrone C, Anne C, et al. A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J Mol Biol 2005 Jan 28; 345(4): 785–95 Bounaga S, Galleni M, Laws AP, et al. Cysteinyl peptide inhibitors of Bacillus cereus zinc beta-lactamase. Bioorg Med Chem 2001 Feb; 9(2): 503–10 Yamaguchi Y, Jin W, Matsunaga K, et al. Crystallographic investigation of the inhibition mode of a VIM-2 metallobeta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J Med Chem 2007 Dec 27; 50(26): 6647–53 Mollard C, Moali C, Papamicael C, et al. Thiomandelic acid, a broad spectrum inhibitor of zinc beta-lactamases: kinetic and spectroscopic studies. J Biol Chem 2001 Nov 30; 276(48): 45015–23 Lienard BM, Garau G, Horsfall L, et al. Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Org Biomol Chem 2008 Jul 7; 6(13): 2282–94 Horsfall LE, Garau G, Lienard BM, et al. Competitive inhibitors of the CphA metallo-beta-lactamase from Aeromonas hydrophila. Antimicrob Agents Chemother 2007 Jun; 51(6): 2136–42 Badarau A, Llinas A, Laws AP, et al. Inhibitors of metallobeta-lactamase generated from beta-lactam antibiotics. Biochemistry 2005 Jun 21; 44(24): 8578–89 Minond D, Saldanha SA, Subramaniam P, et al. Inhibitors of VIM-2 by screening pharmacologically active and click-chemistry compound libraries. Bioorg Med Chem 2009 Jul 15; 17(14): 5027–37 Lienard BM, Huting R, Lassaux P, et al. Dynamic combinatorial mass spectrometry leads to metallo-beta-lactamase inhibitors. J Med Chem 2008 Feb 14; 51(3): 684–8 Moali C, Anne C, Lamotte-Brasseur J, et al. Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis. Chem Biol 2003 Apr; 10(4): 319–29 Park H, Merz Jr KM. Force field design and molecular dynamics simulations of the carbapenem- and cephamycin-resistant dinuclear zinc metallo-beta-lactamase from Bacteroides fragilis and its complex with a biphenyl tetrazole inhibitor. J Med Chem 2005 Mar 10; 48(5): 1630–7 Scrofani SD, Chung J, Huntley JJ, et al. NMR characterization of the metallo-beta-lactamase from Bacteroides fragilis and its interaction with a tight-binding inhibitor: role of an active-site loop. Biochemistry 1999 Nov 2; 38(44): 14507–14 Huntley JJ, Scrofani SD, Osborne MJ, et al. Dynamics of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. Biochemistry 2000 Nov 7; 39(44): 13356–64 Park H, Brothers EN, Merz Jr KM. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis. J Am Chem Soc 2005 Mar 30; 127(12): 4232–41 Payne DJ, Du W, Bateson JH. β-Lactamase epidemiology and the utility of established and novel β-lactamase inhibitors. Exp Opin Invest Drugs 2000 Feb; 9(2): 247–61 Sun Q, Law A, Crowder MW, et al. Homo-cysteinyl peptide inhibitors of the L1 metallo-beta-lactamase, and SAR as determined by combinatorial library synthesis. Bioorg Med Chem Lett 2006 Oct 1; 16(19): 5169–75 Antony J, Piquemal JP, Gresh N. Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-beta-lactamase by polarizable molecular mechanics: validation on model binding sites by quantum chemistry. J Comput Chem 2005 Aug; 26(11): 1131–47 Antony J, Gresh N, Olsen L, et al. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics. J Comput Chem 2002 Oct; 23(13): 1281–96 Garcia-Saez I, Hopkins J, Papamicael C, et al. The 1.5-A structure of Chryseobacterium meningosepticum zinc beta-lactamase in complex with the inhibitor, D-captopril. J Biol Chem 2003 Jun 27; 278(26): 23868–73 Garcia-Saez I, Mercuri PS, Papamicael C, et al. Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-beta-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril. J Mol Biol 2003 Jan 24; 325(4): 651–60 Damblon C, Jensen M, Ababou A, et al. The inhibitor thiomandelic acid binds to both metal ions in metallobeta-lactamase and induces positive cooperativity in metal binding. J Biol Chem 2003 Aug 1; 278(31): 29240–51 Selevsek N, Tholey A, Heinzle E, et al. Studies on ternary metallo-beta lactamase-inhibitor complexes using electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 2006 Jul; 17(7): 1000–4 Moloughney JG, D Thomas J, Toney JH. Novel IMP-1 metallo-beta-lactamase inhibitors can reverse meropenem resistance in Escherichia coli expressing IMP-1. FEMS Microbiol Lett 2005 Feb 1; 243(1): 65–71 Bebrone C, Anne C, De Vriendt K, et al. Dramatic broadening of the substrate profile of the Aeromonas hydrophila CphA metallo-beta-lactamase by site-directed mutagenesis. J Biol Chem 2005 Aug 5; 280(31): 28195–202 Sanchez PA, Toney JH, Thomas JD, et al. A sensitive coupled HPLC/electrospray mass spectrometry assay for SPM-1 metallo-beta-lactamase inhibitors. Assay Drug Dev Technol 2009 Apr; 7(2): 170–9 Sanschagrin F, Levesque RC. A specific peptide inhibitor of the class B metallo-beta-lactamase L-1 from Stenotrophomonas maltophilia identified using phage display. J Antimicrob Chemother 2005 Feb; 55(2): 252–5