CsBPC2 là yếu tố thiết yếu cho sự sống sót của dưa chuột dưới stress lạnh

Springer Science and Business Media LLC - Tập 23 - Trang 1-14 - 2023
Di Meng1, Shuzhen Li2, Xiaojie Feng1, Qinghua Di1, Mengdi Zhou1, Xianchang Yu1, Chaoxing He1, Yan Yan1, Jun Wang1, Mintao Sun1, Yansu Li1
1State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
2Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, China

Tóm tắt

Stress lạnh ảnh hưởng đến sự phát triển và phát triển của dưa chuột. Việc yếu tố phiên mã BPC2 tham gia vào khả năng chịu lạnh và cơ chế điều chỉnh của nó ở thực vật chưa được báo cáo. Ở đây, chúng tôi đã sử dụng giống dưa chuột hoang dã (WT) và hai dòng đột biến Csbpc2 làm vật liệu nghiên cứu. Các cơ chế cơ bản đã được xem xét bằng cách xác định kiểu hình, các chỉ số sinh lý và hóa sinh, và biểu hiện gen sau khi bị stress lạnh. Kết quả cho thấy việc knockout CsBPC2 làm giảm khả năng chịu lạnh của dưa chuột bằng cách làm tăng chỉ số tổn thương lạnh, tính dẫn điện tương đối và hàm lượng malondialdehyde (MDA) và giảm hoạt tính của enzyme chống oxy hóa. Chúng tôi sau đó đã thực hiện giải trình tự RNA (RNA-seq) để khám phá các thay đổi ở mức độ phiên mã trong các đột biến Csbpc2. Một số lượng lớn các gen biểu hiện khác biệt (1032) đã được xác định và phát hiện là duy nhất ở các đột biến Csbpc2. Tuy nhiên, chỉ có 489 gen được điều chỉnh giảm liên quan đến tổng hợp và vận chuyển amino acid và vitamin đã được tìm thấy là làm phong phú thông qua phân tích GO. Hơn nữa, cả kỹ thuật RNA-seq và qPT-PCR đều cho thấy rằng việc knockout CsBPC2 cũng làm giảm biểu hiện của một số gen nhạy cảm với lạnh chính, chẳng hạn như CsICE1, CsCOR413IM2, CsBZR1 và CsBZR2. Những kết quả này cho thấy mạnh mẽ rằng việc knockout CsBPC2 không chỉ ảnh hưởng đến các gen chức năng lạnh mà còn làm giảm nồng độ của một số metabolite quan trọng dưới stress lạnh. Tóm lại, nghiên cứu này lần đầu tiên tiết lộ rằng CsBPC2 là thiết yếu cho khả năng chịu lạnh ở dưa chuột và cung cấp một tham khảo cho nghiên cứu chức năng sinh học của BPC2 ở các loài thực vật khác.

Từ khóa

#dưa chuột #stress lạnh #yếu tố phiên mã #CsBPC2 #khả năng chịu lạnh

Tài liệu tham khảo

Olechowska E, Słomnicka R, Kaźmińska K, Olczak-Woltman H, Bartoszewski G. The genetic basis of cold tolerance in cucumber (Cucumis sativus L.)-the latest developments and perspectives. J Appl Genet. 2022;63(4):597–608. Huang JN, Zhao JY, Wang X, Ma LF, Ma ZT, Meng XN, Fan HY. SnRK1 signaling regulates cucumber growth and resistance to Corynespora cassiicola. Plant Sci. 2023;332: 111716. Li CX, Dong SY, Bo KL, Miao H, Zhang SP, Gu XF. Research progress in physiological and molecular mechanism of low temperature stress response in cucumber. China Vegetables. 2019;(05):17–24(In Chinese). Guo XY, Liu DF, Chong K. Cold signaling in plants: Insights into mechanisms and regulation. J Integr Plant Biol. 2018;60(9):745–56. Liu ZY, Jia YX, Ding YL, Shi YT, Li Z, Guo Y, Gong ZZ, Yang SH. Plasma membrane CRPK1-Mediated phosphorylation of 14-3-3 proteins induces their nuclear import to Fine-Tune CBF signaling during cold response. Mol Cell. 2017;66(1):117–28. Kidokoro S, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant cold-stress responses. Trends Plant Sci. 2022;27(9):922–35. Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17(7):1866–75. Li JL, Li HM, Quan XY, Shan QL, Wang WB, Yin N, Wang SQ, Wang ZH, He WX. Comprehensive analysis of cucumber C-repeat/dehydration-responsive element binding factor family genes and their potential roles in cold tolerance of cucumber. BMC Plant Biol. 2022;22(1):270. Rihan HZ, Al-Issawi M, Fuller MP. Advances in physiological and molecular aspects of plant cold tolerance. J Plant Interact. 2017;12(1):143–57. Li SH, Liu S, Zhang Q, Cui MX, Zhao M, Li NY, Wang SN, Wu RG, Zhang L, Cao YP, Wang LH. The interaction of ABA and ROS in plant growth and stress resistances. Front Plant Sci. 2022;13:1050132. Nadarajah KK. ROS Homeostasis in abiotic stress tolerance in plants. Int J Mol Sci. 2020;21(15):5208. Duan XY, Yu XJ, Wang YD, Fu W, Cao RF, Yang L, Ye XL. Genome-wide identification and expression analysis of glutathione S-transferase gene family to reveal their role in cold stress response in cucumber. Front Genet. 2022;13:1009883. Anwar A, Liu YM, Dong RR, Bai LQ, Yu XC, Li YS. The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol Res. 2018;51(1):46. Chen LG, Song Y, Li SJ, Zhang LP, Zou CS, Yu D. The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta. 2012;1819(2):120–8. Gilmour SJ, Fowler SG, Thomashow MF. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol. 2004;54(5):767–81. Zhao CZ, Zhang ZJ, Xie SJ, Si T, Li YY, Zhu J-K. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis1. Plant Physiol. 2016;171(4):2744–59. Jia YX, Ding YL, Shi YT, Zhang XY, Gong ZZ, Yang SH. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 2016;212(2):345–53. Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J. 2004;37(1):115–27. Zhu JH, Shi HZ, Lee B, Damsz B, Cheng S, Stirm V, Zhu JK, Hasegawa PM, Bressan RA. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA. 2004;101(26):9873–8. Li SZ, Miao L, Huang B, Gao LH, He CX, Yan Y, Wang J, Yu XC, Li YS. Genome-wide identification and characterization of cucumber BPC transcription factors and their responses to abiotic stresses and exogenous phytohormones. Int J Mol Sci. 2019;20(20):5048. Meister RJ, Williams LA, Monfared MM, Gallagher TL, Kraft EA, Nelson CG, Gasser CS. Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. Plant J. 2004;37(3):426–38. Sangwan I, O’Brian MR. Identification of a soybean protein that interacts with GAGA element dinucleotide repeat DNA. Plant Physiol. 2002;129(4):1788–94. Monfared MM, Simon MK, Meister RJ, Roig-Villanova I, Kooiker M, Colombo L, Fletcher JC, Gasser CS. Overlapping and antagonistic activities of BASIC PENTACYSTEINE genes affect a range of developmental processes in Arabidopsis. Plant J. 2011;66(6):1020–31. Li SZ, Sun MT, Miao L, Di QH, Lv LJ, Yu XC, Yan Y, He CX, Wang J, Shi AK, Li YS. Multifaceted regulatory functions of CsBPC2 in cucumber under salt stress conditions. Hortic Res. 2023;10(5): d51. Mu Y, Liu YM, Bai LQ, Li SZ, He CX, Yan Y, Yu XC, Li YS. Cucumber CsBPCs regulate the expression of CsABI3 during seed germination. Front Plant Sci. 2017;8:459. Simonini S, Kater MM. Class I BASIC PENTACYSTEINE factors regulate HOMEOBOX genes involved in meristem size maintenance. J Exp Bot. 2014;65(6):1455–65. Shanks CM, Hecker A, Cheng CY, Brand L, Collani S, Schmid M, Schaller GE, Wanke D, Harter K, Kieber JJ. Role of BASIC PENTACYSTEINE transcription factors in a subset of cytokinin signaling responses. Plant J. 2018;95(3):458–73. Theune ML, Bloss U, Brand LH, Ladwig F, Wanke D. Phylogenetic analyses and GAGA-motif binding studies of BBR/BPC proteins lend to clues in GAGA-motif recognition and a regulatory role in brassinosteroid signaling. Front Plant Sci. 2019;10:466. Di QH, Li YS, Li SZ, Shi AK, Zhou MD, Ren HZ, Yan Y, He CX, Wang J, Sun MT, Yu XC. Photosynthesis mediated by RBOH-dependent signaling is essential for cold stress memory. Antioxidants (Basel). 2022;11(5):969. Yan Y. Functional analysis of low-temperature tolerance conferred by the GPA1-encoded G protein subunit in Cucumis sativus. China Agricultural University, thesis, China, 2019 (In Chinese). Zhu J-K. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313–24. Ding YL, Shi YT, Yang SH. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New phytol. 2019;222(4):1690–704. Kopeć P, Rapacz M, Arora R. Post-translational activation of CBF for inducing freezing tolerance. Trends Plant Sci. 2022;27(5):415–7. Santi L, Wang YM, Stile MR, Berendzen K, Wanke D, Roig C, Pozzi C, Müller K, Müller J, Rohde W, Salamini F. The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J. 2003;34(6):813–26. Kooiker M, Airoldi CA, Losa A, Manzotti PS, Finzi L, Kater MM, Colombo L. BASIC PENTACYSTEINE1, a GA binding protein that induces conformational changes in the regulatory region of the homeotic Arabidopsis gene SEEDSTICK. Plant Cell. 2005;17(3):722–9. Berger N, Dubreucq B, Roudier F, Dubos C, Lepiniec L. Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at Lysine-27. Plant Cell. 2011;23(11):4065–78. Yu PH, Jiang N, Fu WM, Zheng GJ, Li GY, Feng BH, Chen TT, Ma JY, Li HB, Tao LX, Fu GF. ATP hydrolysis determines cold tolerance by regulating available energy for Glutathione synthesis in rice seedling plants. Rice (N.Y.). 2020;13(1):23. Liu C, Yang XX, Yan ZS, Fan YJ, Feng GJ, Liu DJ. Analysis of differential gene expression in cold-tolerant vs. cold-sensitive varieties of snap bean (Phaseolus vulgaris L.) in response to low temperature stress. Genes Genomics. 2019;41(12):1445–55. Lee DH, Lee CB. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci. 2000;159(1):75–85. Dong WK, Ma X, Jiang HY, Zhao CX, Ma HL. Physiological and transcriptome analysis of Poa pratensis var anceps cv. Qinghai in response to cold stress. BMC Plant Biol. 2020;20(1):362. Zhang F, Ji SJ, Wei BD, Cheng SC, Wang YJ, Hao J, Wang SY, Zhou Q. Transcriptome analysis of postharvest blueberries (Vaccinium corymbosum ’Duke’) in response to cold stress. BMC Plant Biol. 2020;20(1):80. Bartels D, Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci. 2005;24(1):23–58. Feng XJ, Li SZ, Meng D, Di QH, Zhou MD, Yu XC, He CX, Yan Y, Wang J, Sun MT, Li YS. CsBPC2 is a key regulator of root growth and development. Physiol Plant. 2023;175(4): e13977. Zhu JH, Dong CH, Zhu J-K. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol. 2007;10(3):290–5. Agarwal M, Hao YJ, Kapoor A, Dong CH, Fujii H, Zheng XW, Zhu J-K. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem. 2006;281(49):37636–45. Chinnusamy V, Zhu JH, Zhu J-K. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007;12(10):444–51. Zhang X, Fowler SG, Cheng HM, Lou YG, Rhee SY, Stockinger EJ, Thomashow MF. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant Cell. 2004;39(16):905–19. Sanghera GS, Wani SH, Hussain W, Singh NB. Engineering cold stress tolerance in crop plants. Curr Genomics. 2011;12(1):30–43. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol. 1999;17(3):287–91. Nakashima K, Yamaguchi-Shinozaki K. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plantarum. 2006;126(1):62–71. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science. 1998;280(5360):104–6. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 2004;38(6):982–93. Okawa K, Nakayama K, Kakizaki T, Yamashita T, Inaba T. Identification and characterization of Cor413im proteins as novel components of the chloroplast inner envelope. Plant Cell Environ. 2008;31(10):1470–83. Jiang Y-P, Huang L-F, Cheng F, Zhou Y-H, Xia X-J, Mao W-H, Shi K, Yu J-Q. Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol Plant. 2013;148(1):133–45. Wang D-Z, Jin Y-N, Ding X-H, Wang W-J, Zhai S-S, Bai L-P, Guo Z-F. Gene regulation and signal transduction in the ICE–CBF–COR signaling pathway during cold stress in plants. Biochemistr(Mosc). 2017;82(10):1103–17. Eremina M, Unterholzner SJ, Rathnayake AI, Castellanos M, Khan M, Kugler KG, May ST, Mayer KF, Rozhon W, Poppenberger B. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc Natl Acad Sci USA. 2016;113(40):E5982–91.