Crystal structure prediction using ab initio evolutionary techniques: Principles and applications

Journal of Chemical Physics - Tập 124 Số 24 - 2006
Artem R. Oganov1, Colin W. Glass1
1ETH Zurich Laboratory of Crystallography, Department of Materials, , HCI G 515, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland

Tóm tắt

We have developed an efficient and reliable methodology for crystal structure prediction, merging ab initio total-energy calculations and a specifically devised evolutionary algorithm. This method allows one to predict the most stable crystal structure and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input. Extremely high (nearly 100%) success rate has been observed in a few tens of tests done so far, including ionic, covalent, metallic, and molecular structures with up to 40 atoms in the unit cell. We have been able to resolve some important problems in high-pressure crystallography and report a number of new high-pressure crystal structures (stable phases: ε-oxygen, new phase of sulphur, new metastable phases of carbon, sulphur and nitrogen, stable and metastable phases of CaCO3). Physical reasons for the success of this methodology are discussed.

Từ khóa


Tài liệu tham khảo

1988, Nature (London), 335, 201, 10.1038/335201a0

2005, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., B61, 511

2003, Phys. Rev. Lett., 90, 075503, 10.1103/PhysRevLett.90.075503

2005, Z. Kristallogr., 220, 489, 10.1524/zkri.220.5.489.65078

1990, Nature (London), 346, 343, 10.1038/346343a0

1996, Angew. Chem., Int. Ed. Engl., 35, 1287

1997, J. Phys. Chem. A, 101, 5111, 10.1021/jp970984n

2004, J. Chem. Phys., 120, 9911, 10.1063/1.1724816

1995, J. Mater. Chem., 5, 1269, 10.1039/jm9950501269

1999, Phys. Chem. Chem. Phys., 1, 2535, 10.1039/a901227c

2004, Struct. Bonding (Berlin), 110, 95, 10.1007/b13934

1995, Phys. Rev. Lett., 75, 288, 10.1103/PhysRevLett.75.288

1990, Am. Mineral., 75, 439

1997, Science, 278, 1109, 10.1126/science.278.5340.1109

2004, J. Phys. Chem. Solids, 65, 1527, 10.1016/j.jpcs.2003.11.042

2004, Nature (London), 430, 445, 10.1038/nature02701

2005, Proc. Natl. Acad. Sci. U.S.A., 102, 10828, 10.1073/pnas.0501800102

2005, Geophys. Res. Lett., 32, L06303, 10.1029/2004GL022204

2004, Science, 304, 855, 10.1126/science.1095932

1996, Science, 274, 1880, 10.1126/science.274.5294.1880

2005, Nature (London), 438, 1142, 10.1038/nature04439

2004, How to Solve It: Modern Heuristics

2004, Struct. Bonding (Berlin), 110, 1, 10.1007/b13931

1996, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169

2002, J. Phys.: Condens. Matter, 14, 2745, 10.1088/0953-8984/14/11/302

2005, Z. Kristallogr., 220, 552

2001, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515

2003, J. Chem. Phys., 118, 10174, 10.1063/1.1570394

2004, Earth Planet. Sci. Lett., 22, 241

2005, Phys. Rev. B, 71, 064104, 10.1103/PhysRevB.71.064104

2002, Understanding Molecular Simulation. From Algorithms to Applications

1999, Nature (London), 401, 462, 10.1038/46758

1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

1994, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953

1999, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758

1964, Acta Crystallogr., 17, 752, 10.1107/S0365110X64001840

1987, Phys. Rev. B, 36, 3373, 10.1103/PhysRevB.36.3373

1995, Phys. Rev. B, 52, 15035, 10.1103/PhysRevB.52.15035

2001, Z. Kristallogr., 216, 417, 10.1524/zkri.216.8.417.20360

1969, Science, 166, 218, 10.1126/science.166.3902.218

2004, Phys. Rev. B, 70, 134106, 10.1103/PhysRevB.70.134106

2005, Phys. Rev. B, 71, 020101, 10.1103/PhysRevB.71.020101

2005, High Press. Res., 25, 17, 10.1080/08957950412331331682

2005, Nat. Mater., 4, 152, 10.1038/nmat1294

2005, Nat. Mater., 4, 550, 10.1038/nmat1417

1935, J. Chem. Phys., 3, 764, 10.1063/1.1749590

1998, Nature (London), 393, 46, 10.1038/29949

2002, Nature (London), 416, 613, 10.1038/416613a

1996, Rep. Prog. Phys., 59, 29, 10.1088/0034-4885/59/1/002

2001, Proc. Natl. Acad. Sci. U.S.A., 98, 14234, 10.1073/pnas.201528198

2005, Nature (London), 435, 1206, 10.1038/nature03699

Hazen, 2000, Reviews in Mineralogy and Geochemistry, 335

1992, Phys. Rev. B, 46, 14419, 10.1103/PhysRevB.46.14419

2004, Nat. Mater., 3, 558, 10.1038/nmat1146

2002, Phys. Rev. B, 66, 224108, 10.1103/PhysRevB.66.224108

1979, Chem. Phys. Lett., 68, 49, 10.1016/0009-2614(79)80066-4

1995, Phys. Rev. Lett., 74, 4690, 10.1103/PhysRevLett.74.4690

1998, Nature (London), 393, 767, 10.1038/31656

2005, Phys. Rev. Lett., 94, 205701, 10.1103/PhysRevLett.94.205701

2002, Phys. Rev. Lett., 88, 205503, 10.1103/PhysRevLett.88.205503

1999, Phys. Rev. Lett., 83, 4093, 10.1103/PhysRevLett.83.4093

1999, Geophys. Res. Lett., 26, 1231, 10.1029/1999GL900214

2003, Nature (London), 424, 1032, 10.1038/nature01954

2003, Nature (London), 424, 536, 10.1038/nature01829

1989, Phys. Rev. Lett., 62, 665, 10.1103/PhysRevLett.62.665

2000, Phys. Rev. Lett., 85, 2797, 10.1103/PhysRevLett.85.2797

1996, J. Appl. Phys., 80, 1522, 10.1063/1.362946

2002, High Temp. - High Press., 34, 323, 10.1068/htjr033

2006, Science, 311, 983, 10.1126/science.1120865

2006, Earth Planet. Sci. Lett., 241, 95, 10.1016/j.epsl.2005.10.014

2005, Am. Mineral., 90, 667, 10.2138/am.2005.1610

2005, Phys. Chem. Miner., 32, 8, 10.1007/s00269-004-0428-5

2002, Phys. Rev. Lett., 88, 255506, 10.1103/PhysRevLett.88.255506

1993, J. Chem. Phys., 98, 5648, 10.1063/1.464913

2003, Phys. Rev. Lett., 91, 146401, 10.1103/PhysRevLett.91.146401

2002, Phys. Rev. B, 65, 235109, 10.1103/PhysRevB.65.235109

1995, Phys. Rev. B, 52, R5467, 10.1103/PhysRevB.52.R5467

1999, Nature (London), 399, 756, 10.1038/21595

1996, Rev. Mod. Phys., 68, 13, 10.1103/RevModPhys.68.13

2001, Rev. Mod. Phys., 73, 33, 10.1103/RevModPhys.73.33

2005, Z. Kristallogr., 220, 585