Crystal structure of BinB: A receptor binding component of the binary toxin from Lysinibacillus sphaericus
Tóm tắt
Từ khóa
Tài liệu tham khảo
Charles, 1996, Bacillus sphaericus toxins: molecular biology and mode of action, Annu Rev Entomol, 41, 451, 10.1146/annurev.en.41.010196.002315
Ahmed, 1995, Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated, J Bacteriol, 177, 3904, 10.1128/JB.177.14.3904-3910.1995
Baumann, 1989, Expression in Bacillus subtilis of the 51- and 42-kilodalton mosquitocidal toxin genes of Bacillus sphaericus, Appl Environ Microbiol, 55, 252, 10.1128/AEM.55.1.252-253.1989
Baumann, 1991, Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins, Microbiol Rev, 55, 425, 10.1128/MMBR.55.3.425-436.1991
Regis, 2001, Bacteriological larvicides of dipteran disease vectors, Trends Parasitol, 17, 377, 10.1016/S1471-4922(01)01953-5
Oei, 1990, An analysis of the genes encoding the 51.4- and 41.9-kDa toxins of Bacillus sphaericus 2297 by deletion mutagenesis: the construction of fusion proteins, FEMS Microbiol Lett, 60, 265, 10.1111/j.1574-6968.1990.tb03900.x
Nicolas, 1993, Respective role of the 42- and 51-kDa components of the Bacillus sphaericus toxin overexpressed in Bacillus thuringiensis, FEMS Microbiol Lett, 106, 275, 10.1111/j.1574-6968.1993.tb05976.x
Broadwell, 1987, Proteolysis in the gut of mosquito larvae results in further activation of the Bacillus sphaericus toxin, Appl Environ Microbiol, 53, 1333, 10.1128/AEM.53.6.1333-1337.1987
Broadwell, 1990, Construction by site-directed mutagenesis of a 39-kilodalton mosquitocidal protein similar to the larva-processed toxin of Bacillus sphaericus 2362, J Bacteriol, 172, 4032, 10.1128/JB.172.7.4032-4036.1990
Clark, 1990, Deletion analysis of the 51-kilodalton protein of the Bacillus sphaericus 2362 binary mosquitocidal toxin: construction of derivatives equivalent to the larva-processed toxin, J Bacteriol, 172, 6759, 10.1128/JB.172.12.6759-6763.1990
Promdonkoy, 2008, High-level expression in Escherichia coli, purification and mosquito-larvicidal activity of the binary toxin from Bacillus sphaericus, Curr Microbiol, 57, 626, 10.1007/s00284-008-9254-1
Nielsen-Leroux, 1992, Binding of Bacillus sphaericus binary toxin to a specific receptor on midgut brush-border membranes from mosquito larvae, FEBS J, 210, 585
Silva-Filha, 1997, Binding kinetics of Bacillus sphaericus binary toxin to midgut brush-border membranes of Anopheles and Culex sp. mosquito larvae, FEBS J, 247, 754
Charles, 1997, Binding of the 51- and 42-kDa individual components from the Bacillus sphaericus crystal toxin to mosquito larval midgut membranes from Culex and Anopheles sp. (Diptera: Culicidae), FEMS Microbiol Lett, 156, 153, 10.1016/S0378-1097(97)00419-9
Oei, 1992, Binding of purified Bacillus sphaericus binary toxin and its deletion derivatives to Culex quinquefasciatus gut: elucidation of functional binding domains, J Gen Microbiol, 138, 1515, 10.1099/00221287-138-7-1515
Shanmugavelu, 1998, Functional complementation of nontoxic mutant binary toxins of Bacillus sphaericus 1593M generated by site-directed mutagenesis, Appl Environ Microbiol, 64, 756, 10.1128/AEM.64.2.756-759.1998
Elangovan, 2000, Identification of the functional site in the mosquito larvicidal binary toxin of Bacillus sphaericus 1593M by site-directed mutagenesis, Biochem Biophys Res Commun, 276, 1048, 10.1006/bbrc.2000.3575
Opota, 2008, Identification and characterization of the receptor for the Bacillus sphaericus binary toxin in the malaria vector mosquito, Anopheles gambiae, Comp Biochem Physiol B Biochem Mol Biol, 149, 419, 10.1016/j.cbpb.2007.11.002
Darboux, 2001, The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression, Insect Biochem Mol Biol, 31, 981, 10.1016/S0965-1748(01)00046-7
Silva-Filha, 1999, Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens (Diptera: Culicidae), Insect Biochem Mol Biol, 29, 711, 10.1016/S0965-1748(99)00047-8
Ferreira, 2010, The orthologue to the Cpm1/Cqm1 receptor in Aedes aegypti is expressed as a midgut GPI-anchored alpha-glucosidase, which does not bind to the insecticidal binary toxin, Insect Biochem Mol Biol, 40, 604, 10.1016/j.ibmb.2010.05.007
Ferreira, 2014, Non conserved residues between Cqm1 and Aam1 mosquito alpha-glucosidases are critical for the capacity of Cqm1 to bind the Binary toxin from Lysinibacillus sphaericus, Insect Biochem Mol Biol, 50, 34, 10.1016/j.ibmb.2014.04.004
Cokmus, 1997, Electrophysiological effects of Bacillus sphaericus binary toxin on cultured mosquito cells, J Invertebr Pathol, 69, 197, 10.1006/jipa.1997.4660
Schwartz, 2001, Permeabilization of model lipid membranes by Bacillus sphaericus mosquitocidal binary toxin and its individual components, J Membr Biol, 184, 171, 10.1007/s00232-001-0086-1
Boonserm, 2006, Association of the components of the binary toxin from Bacillus sphaericus in solution and with model lipid bilayers, Biochem Biophys Res Commun, 342, 1273, 10.1016/j.bbrc.2006.02.086
Kunthic, 2011, Essential role of tryptophan residues in toxicity of binary toxin from Bacillus sphaericus, BMB Rep, 44, 674, 10.5483/BMBRep.2011.44.10.674
Silva-Filha, 2003, Immunocytochemical localization of the Bacillus sphaericus binary toxin components in Culex quinquefasciatus (Diptera:Culicidae) larvae midgut, Pesticide Biochem Physiol, 77, 138, 10.1016/j.pestbp.2003.07.002
Opota, 2011, Bacillus sphaericus binary toxin elicits host cell autophagy as a response to intoxication, PLoS One, 6, e14682, 10.1371/journal.pone.0014682
Srisucharitpanit, 2012, Expression and purification of the active soluble form of Bacillus sphaericus binary toxin for structural analysis, Protein Expr Purif, 82, 368, 10.1016/j.pep.2012.02.009
Srisucharitpanit, 2013, Crystallization and preliminary X-ray crystallographic analysis of the functional form of BinB binary toxin from Bacillus sphaericus, Acta Crystallogr Sect F Struct Biol Cryst Commun, 69, 170, 10.1107/S1744309113000110
Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Crystallogr D Biol Crystallogr, 60, 2126, 10.1107/S0907444904019158
DeLano, 2002, The PyMOL Molecular Graphics System
Skubak, 2004, Direct incorporation of experimental phase information in model refinement, Acta Crystallogr D Biol Crystallogr, 60, 2196, 10.1107/S0907444904019079
Laskowski, 1993, Main-chain bond lengths and bond angles in protein structures, J Mol Biol, 231, 1049, 10.1006/jmbi.1993.1351
Parker, 1994, Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states, Nature, 367, 292, 10.1038/367292a0
Boonyos, 2010, Role of cysteine at positions 67, 161 and 241 of a Bacillus sphaericus binary toxin BinB, BMB Rep, 43, 23, 10.5483/BMBRep.2010.43.1.023
Mancheno, 2005, Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars, J Biol Chem, 280, 17251, 10.1074/jbc.M413933200
Holm, 2010, Dali server: conservation mapping in 3D, Nucleic Acids Res, 38, W545, 10.1093/nar/gkq366
Nakamura, 2007, Binding properties of Clostridium botulinum type C progenitor toxin to mucins, Biochim Biophys Acta, 1770, 551, 10.1016/j.bbagen.2006.11.006
Carpusca, 2006, Bacillus sphaericus mosquitocidal toxin (MTX) and pierisin: the enigmatic offspring from the family of ADP-ribosyltransferases, Mol Microbiol, 62, 621, 10.1111/j.1365-2958.2006.05401.x
Akiba, 2009, Crystal structure of the parasporin-2 Bacillus thuringiensis toxin that recognizes cancer cells, J Mol Biol, 386, 121, 10.1016/j.jmb.2008.12.002
Cole, 2004, Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin, Nat Struct Mol Biol, 11, 797, 10.1038/nsmb804
Hazes, 1996, The (QxW)3 domain: a flexible lectin scaffold, Protein Sci, 5, 1490, 10.1002/pro.5560050805
Inoue, 2003, Structural analysis by X-ray crystallography and calorimetry of a haemagglutinin component (HA1) of the progenitor toxin from Clostridium botulinum, Microbiology, 149, 3361, 10.1099/mic.0.26586-0
Uchida, 2004, Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of domain structure for its membrane pore-formation mechanism, J Biol Chem, 279, 37133, 10.1074/jbc.M404065200
Angulo, 2011, High-resolution structural insights on the sugar-recognition and fusion tag properties of a versatile beta-trefoil lectin domain from the mushroom Laetiporus sulphureus, Glycobiology, 21, 1349, 10.1093/glycob/cwr074
Singkhamanan, 2010, Identification of amino acids required for receptor binding and toxicity of the Bacillus sphaericus binary toxin, FEMS Microbiol Lett, 303, 84, 10.1111/j.1574-6968.2009.01865.x
Singkhamanan, 2013, Amino acid residues in the N-terminal region of the BinB subunit of Lysinibacillus sphaericus binary toxin play a critical role during receptor binding and membrane insertion, J Invertebr Pathol, 114, 65, 10.1016/j.jip.2013.05.008
Romao, 2011, The N-terminal third of the BinB subunit from the Bacillus sphaericus binary toxin is sufficient for its interaction with midgut receptors in Culex quinquefasciatus, FEMS Microbiol Lett, 321, 167, 10.1111/j.1574-6968.2011.02325.x
Pardo-Lopez, 2006, Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion, Biochemistry, 45, 10329, 10.1021/bi060297z
Melton, 2004, The identification and structure of the membrane-spanning domain of the Clostridium septicum alpha toxin, J Biol Chem, 279, 14315, 10.1074/jbc.M313758200
Song, 1996, Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore, Science, 274, 1859, 10.1126/science.274.5294.1859
Smith, 2005, Implications of high-molecular-weight oligomers of the binary toxin from Bacillus sphaericus, J Invertebr Pathol, 88, 27, 10.1016/j.jip.2004.10.005
Bravo, 2007, Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control, Toxicon, 49, 423, 10.1016/j.toxicon.2006.11.022
Mogridge, 2002, The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen, Proc Natl Acad Sci USA, 99, 7045, 10.1073/pnas.052160199
Marvaud, 2001, Clostridium perfringens iota-toxin: mapping of receptor binding and Ia docking domains on Ib, Infect Immun, 69, 2435, 10.1128/IAI.69.4.2435-2441.2001
Blocker, 2000, The C terminus of component C2II of Clostridium botulinum C2 toxin is essential for receptor binding, Infect Immun, 68, 4566, 10.1128/IAI.68.8.4566-4573.2000
Collier, 2003, Anthrax toxin, Annu Rev Cell Dev Biol, 19, 45, 10.1146/annurev.cellbio.19.111301.140655