Crystal structure of BinB: A receptor binding component of the binary toxin from Lysinibacillus sphaericus

Proteins: Structure, Function and Bioinformatics - Tập 82 Số 10 - Trang 2703-2712 - 2014
Kanokporn Srisucharitpanit1,2, Min Yao3, Boonhiang Promdonkoy4, Sarin Chimnaronk2, Isao Tanaka3, Panadda Boonserm2
1Faculty of Allied Health Science; Burapha University, Saensook; Muang District Chon Buri 20131 Thailand
2Institute of Molecular Biosciences, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
3Faculty of Advanced Life Sciences, Hokkaido University, Sapporo 060-0810, Japan
4National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand

Tóm tắt

Từ khóa


Tài liệu tham khảo

Charles, 1996, Bacillus sphaericus toxins: molecular biology and mode of action, Annu Rev Entomol, 41, 451, 10.1146/annurev.en.41.010196.002315

Ahmed, 1995, Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated, J Bacteriol, 177, 3904, 10.1128/JB.177.14.3904-3910.1995

Baumann, 1989, Expression in Bacillus subtilis of the 51- and 42-kilodalton mosquitocidal toxin genes of Bacillus sphaericus, Appl Environ Microbiol, 55, 252, 10.1128/AEM.55.1.252-253.1989

Baumann, 1991, Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins, Microbiol Rev, 55, 425, 10.1128/MMBR.55.3.425-436.1991

Regis, 2001, Bacteriological larvicides of dipteran disease vectors, Trends Parasitol, 17, 377, 10.1016/S1471-4922(01)01953-5

Oei, 1990, An analysis of the genes encoding the 51.4- and 41.9-kDa toxins of Bacillus sphaericus 2297 by deletion mutagenesis: the construction of fusion proteins, FEMS Microbiol Lett, 60, 265, 10.1111/j.1574-6968.1990.tb03900.x

Nicolas, 1993, Respective role of the 42- and 51-kDa components of the Bacillus sphaericus toxin overexpressed in Bacillus thuringiensis, FEMS Microbiol Lett, 106, 275, 10.1111/j.1574-6968.1993.tb05976.x

Broadwell, 1987, Proteolysis in the gut of mosquito larvae results in further activation of the Bacillus sphaericus toxin, Appl Environ Microbiol, 53, 1333, 10.1128/AEM.53.6.1333-1337.1987

Broadwell, 1990, Construction by site-directed mutagenesis of a 39-kilodalton mosquitocidal protein similar to the larva-processed toxin of Bacillus sphaericus 2362, J Bacteriol, 172, 4032, 10.1128/JB.172.7.4032-4036.1990

Clark, 1990, Deletion analysis of the 51-kilodalton protein of the Bacillus sphaericus 2362 binary mosquitocidal toxin: construction of derivatives equivalent to the larva-processed toxin, J Bacteriol, 172, 6759, 10.1128/JB.172.12.6759-6763.1990

Promdonkoy, 2008, High-level expression in Escherichia coli, purification and mosquito-larvicidal activity of the binary toxin from Bacillus sphaericus, Curr Microbiol, 57, 626, 10.1007/s00284-008-9254-1

Nielsen-Leroux, 1992, Binding of Bacillus sphaericus binary toxin to a specific receptor on midgut brush-border membranes from mosquito larvae, FEBS J, 210, 585

Silva-Filha, 1997, Binding kinetics of Bacillus sphaericus binary toxin to midgut brush-border membranes of Anopheles and Culex sp. mosquito larvae, FEBS J, 247, 754

Charles, 1997, Binding of the 51- and 42-kDa individual components from the Bacillus sphaericus crystal toxin to mosquito larval midgut membranes from Culex and Anopheles sp. (Diptera: Culicidae), FEMS Microbiol Lett, 156, 153, 10.1016/S0378-1097(97)00419-9

Oei, 1992, Binding of purified Bacillus sphaericus binary toxin and its deletion derivatives to Culex quinquefasciatus gut: elucidation of functional binding domains, J Gen Microbiol, 138, 1515, 10.1099/00221287-138-7-1515

Shanmugavelu, 1998, Functional complementation of nontoxic mutant binary toxins of Bacillus sphaericus 1593M generated by site-directed mutagenesis, Appl Environ Microbiol, 64, 756, 10.1128/AEM.64.2.756-759.1998

Elangovan, 2000, Identification of the functional site in the mosquito larvicidal binary toxin of Bacillus sphaericus 1593M by site-directed mutagenesis, Biochem Biophys Res Commun, 276, 1048, 10.1006/bbrc.2000.3575

Opota, 2008, Identification and characterization of the receptor for the Bacillus sphaericus binary toxin in the malaria vector mosquito, Anopheles gambiae, Comp Biochem Physiol B Biochem Mol Biol, 149, 419, 10.1016/j.cbpb.2007.11.002

Darboux, 2001, The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression, Insect Biochem Mol Biol, 31, 981, 10.1016/S0965-1748(01)00046-7

Silva-Filha, 1999, Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens (Diptera: Culicidae), Insect Biochem Mol Biol, 29, 711, 10.1016/S0965-1748(99)00047-8

Ferreira, 2010, The orthologue to the Cpm1/Cqm1 receptor in Aedes aegypti is expressed as a midgut GPI-anchored alpha-glucosidase, which does not bind to the insecticidal binary toxin, Insect Biochem Mol Biol, 40, 604, 10.1016/j.ibmb.2010.05.007

Ferreira, 2014, Non conserved residues between Cqm1 and Aam1 mosquito alpha-glucosidases are critical for the capacity of Cqm1 to bind the Binary toxin from Lysinibacillus sphaericus, Insect Biochem Mol Biol, 50, 34, 10.1016/j.ibmb.2014.04.004

Cokmus, 1997, Electrophysiological effects of Bacillus sphaericus binary toxin on cultured mosquito cells, J Invertebr Pathol, 69, 197, 10.1006/jipa.1997.4660

Schwartz, 2001, Permeabilization of model lipid membranes by Bacillus sphaericus mosquitocidal binary toxin and its individual components, J Membr Biol, 184, 171, 10.1007/s00232-001-0086-1

Boonserm, 2006, Association of the components of the binary toxin from Bacillus sphaericus in solution and with model lipid bilayers, Biochem Biophys Res Commun, 342, 1273, 10.1016/j.bbrc.2006.02.086

Kunthic, 2011, Essential role of tryptophan residues in toxicity of binary toxin from Bacillus sphaericus, BMB Rep, 44, 674, 10.5483/BMBRep.2011.44.10.674

Silva-Filha, 2003, Immunocytochemical localization of the Bacillus sphaericus binary toxin components in Culex quinquefasciatus (Diptera:Culicidae) larvae midgut, Pesticide Biochem Physiol, 77, 138, 10.1016/j.pestbp.2003.07.002

Opota, 2011, Bacillus sphaericus binary toxin elicits host cell autophagy as a response to intoxication, PLoS One, 6, e14682, 10.1371/journal.pone.0014682

Srisucharitpanit, 2012, Expression and purification of the active soluble form of Bacillus sphaericus binary toxin for structural analysis, Protein Expr Purif, 82, 368, 10.1016/j.pep.2012.02.009

Srisucharitpanit, 2013, Crystallization and preliminary X-ray crystallographic analysis of the functional form of BinB binary toxin from Bacillus sphaericus, Acta Crystallogr Sect F Struct Biol Cryst Commun, 69, 170, 10.1107/S1744309113000110

Sheldrick, 2008, A short history of SHELX, Acta Crystallogr A, 64, 112, 10.1107/S0108767307043930

Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Crystallogr D Biol Crystallogr, 60, 2126, 10.1107/S0907444904019158

DeLano, 2002, The PyMOL Molecular Graphics System

Skubak, 2004, Direct incorporation of experimental phase information in model refinement, Acta Crystallogr D Biol Crystallogr, 60, 2196, 10.1107/S0907444904019079

Laskowski, 1993, Main-chain bond lengths and bond angles in protein structures, J Mol Biol, 231, 1049, 10.1006/jmbi.1993.1351

Parker, 1994, Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states, Nature, 367, 292, 10.1038/367292a0

Boonyos, 2010, Role of cysteine at positions 67, 161 and 241 of a Bacillus sphaericus binary toxin BinB, BMB Rep, 43, 23, 10.5483/BMBRep.2010.43.1.023

Mancheno, 2005, Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars, J Biol Chem, 280, 17251, 10.1074/jbc.M413933200

Holm, 2010, Dali server: conservation mapping in 3D, Nucleic Acids Res, 38, W545, 10.1093/nar/gkq366

Nakamura, 2007, Binding properties of Clostridium botulinum type C progenitor toxin to mucins, Biochim Biophys Acta, 1770, 551, 10.1016/j.bbagen.2006.11.006

Carpusca, 2006, Bacillus sphaericus mosquitocidal toxin (MTX) and pierisin: the enigmatic offspring from the family of ADP-ribosyltransferases, Mol Microbiol, 62, 621, 10.1111/j.1365-2958.2006.05401.x

Akiba, 2009, Crystal structure of the parasporin-2 Bacillus thuringiensis toxin that recognizes cancer cells, J Mol Biol, 386, 121, 10.1016/j.jmb.2008.12.002

Cole, 2004, Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin, Nat Struct Mol Biol, 11, 797, 10.1038/nsmb804

Hazes, 1996, The (QxW)3 domain: a flexible lectin scaffold, Protein Sci, 5, 1490, 10.1002/pro.5560050805

Inoue, 2003, Structural analysis by X-ray crystallography and calorimetry of a haemagglutinin component (HA1) of the progenitor toxin from Clostridium botulinum, Microbiology, 149, 3361, 10.1099/mic.0.26586-0

Uchida, 2004, Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of domain structure for its membrane pore-formation mechanism, J Biol Chem, 279, 37133, 10.1074/jbc.M404065200

Angulo, 2011, High-resolution structural insights on the sugar-recognition and fusion tag properties of a versatile beta-trefoil lectin domain from the mushroom Laetiporus sulphureus, Glycobiology, 21, 1349, 10.1093/glycob/cwr074

Singkhamanan, 2010, Identification of amino acids required for receptor binding and toxicity of the Bacillus sphaericus binary toxin, FEMS Microbiol Lett, 303, 84, 10.1111/j.1574-6968.2009.01865.x

Singkhamanan, 2013, Amino acid residues in the N-terminal region of the BinB subunit of Lysinibacillus sphaericus binary toxin play a critical role during receptor binding and membrane insertion, J Invertebr Pathol, 114, 65, 10.1016/j.jip.2013.05.008

Romao, 2011, The N-terminal third of the BinB subunit from the Bacillus sphaericus binary toxin is sufficient for its interaction with midgut receptors in Culex quinquefasciatus, FEMS Microbiol Lett, 321, 167, 10.1111/j.1574-6968.2011.02325.x

Pardo-Lopez, 2006, Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion, Biochemistry, 45, 10329, 10.1021/bi060297z

Melton, 2004, The identification and structure of the membrane-spanning domain of the Clostridium septicum alpha toxin, J Biol Chem, 279, 14315, 10.1074/jbc.M313758200

Song, 1996, Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore, Science, 274, 1859, 10.1126/science.274.5294.1859

Smith, 2005, Implications of high-molecular-weight oligomers of the binary toxin from Bacillus sphaericus, J Invertebr Pathol, 88, 27, 10.1016/j.jip.2004.10.005

Bravo, 2007, Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control, Toxicon, 49, 423, 10.1016/j.toxicon.2006.11.022

Mogridge, 2002, The lethal and edema factors of anthrax toxin bind only to oligomeric forms of the protective antigen, Proc Natl Acad Sci USA, 99, 7045, 10.1073/pnas.052160199

Marvaud, 2001, Clostridium perfringens iota-toxin: mapping of receptor binding and Ia docking domains on Ib, Infect Immun, 69, 2435, 10.1128/IAI.69.4.2435-2441.2001

Blocker, 2000, The C terminus of component C2II of Clostridium botulinum C2 toxin is essential for receptor binding, Infect Immun, 68, 4566, 10.1128/IAI.68.8.4566-4573.2000

Collier, 2003, Anthrax toxin, Annu Rev Cell Dev Biol, 19, 45, 10.1146/annurev.cellbio.19.111301.140655

Davidson, 1988, Binding of the Bacillus sphaericus (Eubacteriales: Bacillaceae) toxin to midgut cells of mosquito (Diptera: Culicidae) larvae: relationship to host range, J Med Entomol, 25, 151, 10.1093/jmedent/25.3.151