Cấu trúc vi mô của thị trường tiền điện tử: một tổng quan tài liệu hệ thống

Springer Science and Business Media LLC - Tập 332 Số 1-3 - Trang 1035-1068 - 2024
J M de Almeida1, Tiago Gonçalves1
1ISEG – Lisbon School of Economics & Management, CSG, ADVANCE, Universidade de Lisboa, Lisbon, Portugal

Tóm tắt

Tóm tắt

Nghiên cứu này đóng góp vào tài liệu tiền điện tử chưa được củng cố, với một tổng quan tài liệu có hệ thống tập trung vào cấu trúc vi mô của thị trường tiền điện tử. Chúng tôi đã tìm kiếm trong cơ sở dữ liệu Web of Science và chỉ tập trung vào các tạp chí được liệt kê trong danh sách ABS năm 2021. Mẫu cuối cùng của chúng tôi gồm 138 bài nghiên cứu. Chúng tôi đã áp dụng phân tích định lượng và phân tích tổng hợp, và tiết lộ các mối quan hệ mạng phức tạp cũng như một phân tích xu hướng nghiên cứu chi tiết. Nghiên cứu của chúng tôi cung cấp một đóng góp mạnh mẽ và có hệ thống vào tài liệu tiền điện tử bằng cách sử dụng một phương pháp chi tiết và chính xác - sự liên kết tài liệu bibliographic, đồng thời chỉ xem xét các tạp chí học thuật ABS, sử dụng một phạm vi từ khóa rộng hơn, và không áp dụng bất kỳ hạn chế nào về lĩnh vực kiến thức, do đó nâng cao sự đóng góp của tài liệu hiện có bằng cách cho phép những hiểu biết từ các nghiên cứu phụ chất lượng cao hơn về chủ đề này. Những kết luận của nghiên cứu này có tầm quan trọng cực kỳ lớn đối với các nhà nghiên cứu, nhà đầu tư, các nhà quản lý và cộng đồng học thuật nói chung. Nghiên cứu của chúng tôi cung cấp mạng lưới có cấu trúc cao và thông tin rõ ràng cho các nguồn nghiên cứu và chuỗi tài liệu, cho các nghiên cứu trong tương lai về đầu tư tiền điện tử, đồng thời cũng cung cấp những hiểu biết quý giá để hiểu rõ hơn về cấu trúc vi mô của thị trường tiền điện tử và cung cấp thông tin hữu ích cho các nhà quản lý trong việc quy định hiệu quả tiền điện tử.

Từ khóa

#Cấu trúc vi mô thị trường tiền điện tử #tổng quan tài liệu #nghiên cứu tài liệu hệ thống #mã hóa #nhỏ mạch

Tài liệu tham khảo

Aggarwal, D., Chandrasekaran, S., & Annamalai, B. (2020). A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices. Journal of Behavioral and Experimental Finance, 27, 100335. https://doi.org/10.1016/j.jbef.2020.100335

Ahmed, S., Grobys, K., & Sapkota, N. (2020). Profitability of technical trading rules among cryptocurrencies with privacy function. Finance Research Letters, 35, 101495. https://doi.org/10.1016/j.frl.2020.101495

Akyildirim, E., Corbet, S., Katsiampa, P., Kellard, N., & Sensoy, A. (2020). The development of Bitcoin futures: Exploring the interactions between cryptocurrency derivatives. Finance Research Letters, 34, 101234. https://doi.org/10.1016/j.frl.2019.07.007

Akyildirim, E., Corbet, S., Lucey, B., Sensoy, A., & Yarovaya, L. (2020). The relationship between implied volatility and cryptocurrency returns. Finance Research Letters, 33, 101212. https://doi.org/10.1016/j.frl.2019.06.010

Akyildirim, E., Goncu, A., & Sensoy, A. (2021). Prediction of cryptocurrency returns using machine learning. Annals of Operations Research, 297(1–2), 3–36. https://doi.org/10.1007/s10479-020-03575-y

Al-Amri, R., Zakaria, N. H., Habbal, A., & Hassan, S. (2019). Cryptocurrency adoption: current stage, opportunities, and open challenges. International Journal of Advanced Computer Research, 9(44), 293–307. https://doi.org/10.19101/ijacr.pid43

Aliu, F., Nuhiu, A., Krasniqi, B. A., & Jusufi, G. (2021). Modeling the optimal diversification opportunities: The case of crypto portfolios and equity portfolios. Studies in Economics and Finance, 38(1), 50–66. https://doi.org/10.1108/SEF-07-2020-0282

Almeida, J., & Gonçalves, T. C. (2022). A systematic literature review of volatility and risk management on cryptocurrency investment: A methodological point of view. Risks, 10(5), 107. https://doi.org/10.3390/risks10050107

Almeida, J., & Gonçalves, T. C. (2023a). A decade of cryptocurrency investment literature : A cluster-based systematic analysis. International Journal of Financial Studies, 11(2), 71. https://doi.org/10.3390/ijfs11020071

Almeida, J., & Gonçalves, T. C. (2023b). A systematic literature review of investor behavior in the cryptocurrency markets. Journal of Behavioral and Experimental Finance, 37, 100785. https://doi.org/10.1016/j.jbef.2022.100785

Almeida, J., & Gonçalves, T. C. (2023c). Portfolio Diversification, Hedge and Safe-Haven Properties in Cryptocurrency Investments and Financial Economics: A Systematic Literature Review. Journal of Risk and Financial Management, 16(1), 3. https://doi.org/10.3390/jrfm16010003

Almeida, J. (2021). Cryptocurrencies and financial markets – extant literature and future venues. European Journal of Economics, Finance and Administrative Sciences, 108.

Aloosh, A., & Ouzan, S. (2020). The psychology of cryptocurrency prices. Finance Research Letters, 33, 101192. https://doi.org/10.1016/j.frl.2019.05.010

Alvarez-Ramirez, J., & Rodriguez, E. (2021). A singular value decomposition approach for testing the efficiency of Bitcoin and Ethereum markets. Economics Letters, 206, 109997. https://doi.org/10.1016/j.econlet.2021.109997

Al-Yahyaee, K. H., Mensi, W., Ko, H. U., Yoon, S. M., & Kang, S. H. (2020). Why cryptocurrency markets are inefficient: The impact of liquidity and volatility. North American Journal of Economics and Finance, 52(February), 101168. https://doi.org/10.1016/j.najef.2020.101168

Amsyar, I., Christopher, E., Dithi, A., Khan, A. N., & Maulana, S. (2020). The Challenge of Cryptocurrency in the Era of the Digital Revolution: A Review of Systematic Literature. Aptisi Transactions on Technopreneurship (ATT), 2(2), 153–159. https://doi.org/10.34306/att.v2i2.96

Anastasiou, D., Ballis, A., & Drakos, K. (2021). Cryptocurrencies’ Price Crash Risk and Crisis Sentiment. Finance Research Letters, 42(January), 101928. https://doi.org/10.1016/j.frl.2021.101928

Angerer, M., Hoffmann, C. H., Neitzert, F., & Kraus, S. (2020). Objective and subjective risks of investing into cryptocurrencies. Finance Research Letters, 40(2021), 101737. https://doi.org/10.1016/j.frl.2020.101737

Anghel, D. G. (2021). A reality check on trading rule performance in the cryptocurrency market: Machine learning vs technical analysis. Finance Research Letters, 39, 101655. https://doi.org/10.1016/j.frl.2020.101655

Ante, L., & Fiedler, I. (2021). Market reaction to large transfers on the Bitcoin blockchain - Do size and motive matter? Finance Research Letters, 39, 101619. https://doi.org/10.1016/j.frl.2020.101619

Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2019). Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios. Journal of International Financial Markets, Institutions and Money, 61, 37–51. https://doi.org/10.1016/j.intfin.2019.02.003

Aslan, A., & Sensoy, A. (2020). Intraday efficiency-frequency nexus in the cryptocurrency markets. Finance Research Letters, 35, 101298. https://doi.org/10.1016/j.frl.2019.09.013

Aslanidis, N., Bariviera, A. F., & Martínez-Ibañez, O. (2019). An analysis of cryptocurrencies conditional cross correlations. Finance Research Letters, 31(February), 130–137. https://doi.org/10.1016/j.frl.2019.04.019

Aysan, A. F., Demir, E., Gozgor, G., & Lau, C. K. M. (2019). Effects of the geopolitical risks on Bitcoin returns and volatility. Research in International Business and Finance, 47, 511–518. https://doi.org/10.1016/j.ribaf.2018.09.011

Aysan, A. F., Demirtaş, H. B., & Saraç, M. (2021). The Ascent of Bitcoin: Bibliometric Analysis of Bitcoin Research. Journal of Risk and Financial Management, 14(9), 427. https://doi.org/10.3390/jrfm14090427

Badawi, E., & Jourdan, G. V. (2020). Cryptocurrencies emerging threats and defensive mechanisms: A systematic literature review. IEEE Access, 8, 200021–200037. https://doi.org/10.1109/ACCESS.2020.3034816

Baig, A., Blau, B. M., & Sabah, N. (2019). Price clustering and sentiment in bitcoin. Finance Research Letters, 29(March), 111–116. https://doi.org/10.1016/j.frl.2019.03.013

Bariviera, A. F. (2021d). One model is not enough: Heterogeneity in cryptocurrencies’ multifractal profiles. Finance Research Letters, 39, 101649. https://doi.org/10.1016/j.frl.2020.101649

Bariviera, A. F., & Merediz-Solà, I. (2021). Where do we stand in cryptocurrencies economic research? a survey based on hybrid analysis. Journal of Economic Surveys, 35(2), 377–407. https://doi.org/10.1111/joes.12412

Bartolacci, F., Caputo, A., & Soverchia, M. (2020). Sustainability and financial performance of small and medium sized enterprises: A bibliometric and systematic literature review. Business Strategy and the Environment, 29(3), 1297–1309. https://doi.org/10.1002/bse.2434

Bejaoui, A., Ben Sassi, S., & Majdoub, J. (2020). Market dynamics, cyclical patterns and market states: Is there a difference between digital currencies markets? Studies in Economics and Finance, 37(4), 585–604. https://doi.org/10.1108/SEF-08-2019-0302

Beneki, C., Koulis, A., Kyriazis, N. A., & Papadamou, S. (2019). Investigating volatility transmission and hedging properties between Bitcoin and Ethereum. Research in International Business and Finance, 48(January), 219–227. https://doi.org/10.1016/j.ribaf.2019.01.001

Białkowski, J. (2020). Cryptocurrencies in institutional investors’ portfolios: Evidence from industry stop-loss rules. Economics Letters, 191(2020), 108834. https://doi.org/10.1016/j.econlet.2019.108834

Blau, B. M. (2017). Price dynamics and speculative trading in bitcoin. Research in International Business and Finance, 41(May), 493–499. https://doi.org/10.1016/j.ribaf.2017.05.010

Blau, B. M., Griffith, T. G., & Whitby, R. J. (2021). Inflation and Bitcoin: A descriptive time-series analysis. Economics Letters, 203, 109848. https://doi.org/10.1016/j.econlet.2021.109848

Borri, N., & Shakhnov, K. (2020). Regulation spillovers across cryptocurrency markets. Finance Research Letters, 36, 101333. https://doi.org/10.1016/j.frl.2019.101333

Brauneis, A., & Mestel, R. (2018). Price discovery of cryptocurrencies: Bitcoin and beyond. Economics Letters, 165, 58–61. https://doi.org/10.1016/j.econlet.2018.02.001

Brauneis, A., & Mestel, R. (2019). Cryptocurrency-portfolios in a mean-variance framework. Finance Research Letters, 28, 259–264. https://doi.org/10.1016/j.frl.2018.05.008

Burggraf, T., & Rudolf, M. (2020b). Cryptocurrencies and the low volatility anomaly. Finance Research Letters, 40, 101683. https://doi.org/10.1016/j.frl.2020.101683

Burggraf, T., Huynh, T. L. D., Rudolf, M., & Wang, M. (2020). Do FEARS drive Bitcoin? Review of Behavioral Finance, 13(3), 229–258. https://doi.org/10.1108/RBF-11-2019-0161

Cagli, E. C. (2019b). Explosive behavior in the prices of Bitcoin and altcoins. Finance Research Letters, 29, 398–403. https://doi.org/10.1016/j.frl.2018.09.007

Cai, Y., Chevapatrakul, T., & Mascia, D. V. (2021). How is price explosivity triggered in the cryptocurrency markets? Annals of Operations Research. https://doi.org/10.1007/s10479-021-04298-4

Canh, N. P., Wongchoti, U., Thanh, S. D., & Thong, N. T. (2019). Systematic risk in cryptocurrency market: Evidence from DCC-MGARCH model. Finance Research Letters, 29(March), 90–100. https://doi.org/10.1016/j.frl.2019.03.011

Caporale, G. M., & Plastun, A. (2019). The day of the week effect in the cryptocurrency market. Finance Research Letters, 31, 258–269. https://doi.org/10.1016/j.frl.2018.11.012

Caporale, G. M., Gil-Alana, L., & Plastun, A. (2018). Persistence in the cryptocurrency market. Research in International Business and Finance, 46, 141–148. https://doi.org/10.1016/j.ribaf.2018.01.002

Caputo, A., Marzi, G., Maley, J., & Silic, M. (2019). Ten years of conflict management research 2007–2017: An update on themes, concepts and relationships. International Journal of Conflict Management, 30(1), 87–110. https://doi.org/10.1108/IJCMA-06-2018-0078

Chaim, P., & Laurini, M. P. (2018). Volatility and return jumps in bitcoin. Economics Letters, 173, 158–163. https://doi.org/10.1016/j.econlet.2018.10.011

Chaim, P., & Laurini, M. P. (2019c). Nonlinear dependence in cryptocurrency markets. North American Journal of Economics and Finance, 48, 32–47. https://doi.org/10.1016/j.najef.2019.01.015

Chan, S., Chu, J., Zhang, Y., & Nadarajah, S. (2022a). An extreme value analysis of the tail relationships between returns and volumes for high frequency cryptocurrencies. Research in International Business and Finance, 59, 101541. https://doi.org/10.1016/j.ribaf.2021.101541

Charfeddine, L., & Maouchi, Y. (2019d). Are shocks on the returns and volatility of cryptocurrencies really persistent? Finance Research Letters, 28, 423–430. https://doi.org/10.1016/j.frl.2018.06.017

Cheng, H. P., & Yen, K. C. (2020c). The relationship between the economic policy uncertainty and the cryptocurrency market. Finance Research Letters, 35, 101308. https://doi.org/10.1016/j.frl.2019.101308

Chevapatrakul, T., & Mascia, D. V. (2019e). Detecting overreaction in the Bitcoin market: A quantile autoregression approach. Finance Research Letters, 30, 371–377. https://doi.org/10.1016/j.frl.2018.11.004

Chu, J., Zhang, Y., & Chan, S. (2019). The adaptive market hypothesis in the high frequency cryptocurrency market. International Review of Financial Analysis, 64(May), 221–231. https://doi.org/10.1016/j.irfa.2019.05.008

Corbet, S., & Katsiampa, P. (2020). Asymmetric mean reversion of Bitcoin price returns. International Review of Financial Analysis, 71, 101267. https://doi.org/10.1016/j.irfa.2018.10.004

Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L. (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, 28–34. https://doi.org/10.1016/j.econlet.2018.01.004

Corbet, S., Eraslan, V., Lucey, B., & Sensoy, A. (2019a). The effectiveness of technical trading rules in cryptocurrency markets. Finance Research Letters, 31, 32–37. https://doi.org/10.1016/j.frl.2019.04.027

Corbet, S., Lucey, B., Urquhart, A., & Yarovaya, L. (2019b). Cryptocurrencies as a financial asset: A systematic analysis. International Review of Financial Analysis, 62, 182–199. https://doi.org/10.1016/j.irfa.2018.09.003

Corbet, S., Larkin, C., Lucey, B., & Yarovaya, L. (2020). KODAKCoin: A blockchain revolution or exploiting a potential cryptocurrency bubble? Applied Economics Letters, 27(7), 518–524. https://doi.org/10.1080/13504851.2019.1637512

Cross, J. L., Hou, C., & Trinh, K. (2021). Returns, volatility and the cryptocurrency bubble of 2017–18. Economic Modelling, 104, 105643. https://doi.org/10.1016/j.econmod.2021.105643

Dastgir, S., Demir, E., Downing, G., Gozgor, G., & Lau, C. K. M. (2019). The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the Copula-based Granger causality test. Finance Research Letters, 28, 160–164. https://doi.org/10.1016/j.frl.2018.04.019

Demir, E., Gozgor, G., Lau, C. K. M., & Vigne, S. A. (2018). Does economic policy uncertainty predict the Bitcoin returns? An Empirical Investigation. Finance Research Letters, 26(January), 145–149. https://doi.org/10.1016/j.frl.2018.01.005

Ding, Y., Rousseau, R., & Wolfram, D. (2014). Measuring scholarly impact. Springer. https://doi.org/10.1007/978-3-319-10377-8

Duan, K., Li, Z., Urquhart, A., & Ye, J. (2021). Dynamic efficiency and arbitrage potential in Bitcoin: A long-memory approach. International Review of Financial Analysis, 75, 101725. https://doi.org/10.1016/j.irfa.2021.101725

Dyhrberg, A. H., Foley, S., & Svec, J. (2018). How investible is Bitcoin? Analyzing the liquidity and transaction costs of Bitcoin markets. Economics Letters, 171, 140–143. https://doi.org/10.1016/j.econlet.2018.07.032

EhlerS, S., & Gauer, K. (2019). Beyond bitcoin: A statistical comparison of leading cryptocurrencies and fiat currencies and their impact on portfolio diversification. Journal of Alternative Investments, 22(1), 114–126. https://doi.org/10.3905/jai.2019.1.072

Eigelshoven, F., Ullrich, A., & Parry, D. A. (2021). Cryptocurrency Market Manipulation: A Systematic Literature Review. Forty-Second International Conference on Information Systems, December, 1–17. https://www.researchgate.net/publication/354995772

Elsayed, A. H., Gozgor, G., & Lau, C. K. M. (2020e). Causality and dynamic spillovers among cryptocurrencies and currency markets. International Journal of Finance and Economics. https://doi.org/10.1002/ijfe.2257

Eross, A., McGroarty, F., Urquhart, A., & Wolfe, S. (2019). The intraday dynamics of bitcoin. Research in International Business and Finance, 49(January), 71–81. https://doi.org/10.1016/j.ribaf.2019.01.008

Erzurumlu, Y. O., Oygur, T., & Kirik, A. (2020). One size does not fit all: External driver of the cryptocurrency world. Studies in Economics and Finance, 37(3), 545–560. https://doi.org/10.1108/SEF-01-2020-0018

Fang, F., Chung, W., Ventre, C., Basios, M., Kanthan, L., Li, L., & Wu, F. (2021). Ascertaining price formation in cryptocurrency markets with machine learning. European Journal of Finance. https://doi.org/10.1080/1351847X.2021.1908390

Figá-Talamanca, G., & Patacca, M. (2019). Does market attention affect Bitcoin returns and volatility? Decisions in Economics and Finance, 42(1), 135–155. https://doi.org/10.1007/s10203-019-00258-7

Flori, A. (2019f). Cryptocurrencies in finance: Review and applications. International Journal of Theoretical and Applied Finance. https://doi.org/10.1142/S0219024919500201

Fonseca, V., Pacheco, L., & Lobão, J. (2020). Psychological barriers in the cryptocurrency market. Review of Behavioral Finance, 12(2), 151–169. https://doi.org/10.1108/RBF-03-2019-0041

Galvao, A., Mascarenhas, C., Marques, C., Ferreira, J., & Ratten, V. (2019). Triple helix and its evolution: A systematic literature review. Journal of Science and Technology Policy Management, 10(3), 812–833. https://doi.org/10.1108/JSTPM-10-2018-0103

García-Corral, F. J., Cordero-García, J. A., de Pablo-Valenciano, J., & Uribe-Toril, J. (2022). A bibliometric review of cryptocurrencies: how have they grown. Financial Innovation. https://doi.org/10.1186/s40854-021-00306-5

Gil-Alana, L. A., Abakah, E. J. A., & Rojo, M. F. R. (2020f). Cryptocurrencies and stock market indices. Are They Related Research in International Business and Finance, 51, 101063. https://doi.org/10.1016/j.ribaf.2019.101063

Giudici, P., & Abu-Hashish, I. (2019). What determines bitcoin exchange prices? A network VAR approach. Finance Research Letters, 28, 309–318. https://doi.org/10.1016/j.frl.2018.05.013

Gkillas, K., & Katsiampa, P. (2018). An application of extreme value theory to cryptocurrencies. Economics Letters, 164, 109–111. https://doi.org/10.1016/j.econlet.2018.01.020

Grobys, K., & Huynh, T. L. D. (2022). When Tether says “JUMP!” Bitcoin asks “How low?” Finance Research Letters, 47, 102644. https://doi.org/10.1016/j.frl.2021.102644

Grobys, K., & Sapkota, N. (2019). Cryptocurrencies and momentum. Economics Letters, 180, 6–10. https://doi.org/10.1016/j.econlet.2019.03.028

Grobys, K., & Sapkota, N. (2020). Predicting cryptocurrency defaults. Applied Economics, 52(46), 5060–5076. https://doi.org/10.1080/00036846.2020.1752903

Grobys, K., Ahmed, S., & Sapkota, N. (2020g). Technical trading rules in the cryptocurrency market. Finance Research Letters, 32, 101396. https://doi.org/10.1016/j.frl.2019.101396

Guégan, D., & Renault, T. (2021). Does investor sentiment on social media provide robust information for Bitcoin returns predictability? Finance Research Letters, 38, 1–7. https://doi.org/10.1016/j.frl.2020.101494

Hafner, C. M. (2020). Testing for bubbles in cryptocurrencies with time-varying volatility. Journal of Financial Econometrics, 18(2), 233–249. https://doi.org/10.1093/jjfinec/nby023

Hairudin, A., Sifat, I. M., Mohamad, A., & Yusof, Y. (2020h). Cryptocurrencies: A survey on acceptance, governance and market dynamics. International Journal of Finance and Economics. https://doi.org/10.1002/ijfe.2392

Haq, I. U., Maneengam, A., Chupradit, S., Suksatan, W., & Huo, C. (2021). Economic policy uncertainty and cryptocurrency market as a risk management avenue: A systematic review. Risks, 9(9), 1–24. https://doi.org/10.3390/risks9090163

Hashemi Joo, M., Nishikawa, Y., & Dandapani, K. (2020). Announcement effects in the cryptocurrency market. Applied Economics, 52(44), 4794–4808. https://doi.org/10.1080/00036846.2020.1745747

Hasso, T., Pelster, M., & Breitmayer, B. (2019). Who trades cryptocurrencies, how do they trade it, and how do they perform? Evidence from brokerage accounts. Journal of Behavioral and Experimental Finance, 23, 64–74. https://doi.org/10.1016/j.jbef.2019.04.009

Hattori, T., & Ishida, R. (2020). The relationship between arbitrage in futures and spot markets and Bitcoin price movements: Evidence from the Bitcoin markets. Journal of Futures Markets. https://doi.org/10.1002/fut.22171

Herskind, L., Katsikouli, P., & Dragoni, N. (2020). Privacy and Cryptocurrencies - A Systematic Literature Review. IEEE Access, 8, 54044–54059. https://doi.org/10.1109/ACCESS.2020.2980950

Hu, Y., Valera, H. G. A., & Oxley, L. (2019a). Market efficiency of the top market-cap cryptocurrencies: Further evidence from a panel framework. Finance Research Letters, 31(February), 138–145. https://doi.org/10.1016/j.frl.2019.04.012

Hu, B., McInish, T., Miller, J., & Zeng, L. (2019b). Intraday price behavior of cryptocurrencies. Finance Research Letters, 28, 337–342. https://doi.org/10.1016/j.frl.2018.06.002

Hudson, R., & Urquhart, A. (2021). Technical trading and cryptocurrencies. Annals of Operations Research, 297(1–2), 191–220. https://doi.org/10.1007/s10479-019-03357-1

Huynh, T. L. D. (2022). When elon musk changes his tone, does bitcoin adjust its tune? Computational Economics. https://doi.org/10.1007/s10614-021-10230-6

Huynh, L. D., & T. (2019). Spillover risks on cryptocurrency markets: A look from VAR-SVAR granger causality and student’s-t copulas. Journal of Risk and Financial Management, 12(2), 52. https://doi.org/10.3390/jrfm12020052

Huynh, T. L. D., Nguyen, S. P., & Duong, D. (2018). Contagion risk measured by return among cryptocurrencies. International Econometric Conference of Vietnam: https://doi.org/10.1007/978-3-319-73150-6_71

Huynh, T. L. D., Nasir, M. A., Vo, X. V., & Nguyen, T. T. (2020a). “Small things matter most”: The spillover effects in the cryptocurrency market and gold as a silver bullet. North American Journal of Economics and Finance, 54, 101277. https://doi.org/10.1016/j.najef.2020.101277

Huynh, T. L. D., Shahbaz, M., Nasir, M. A., & Ullah, S. (2020b). Financial modelling, risk management of energy instruments and the role of cryptocurrencies. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03680-y

Huynh, T. L. D., Ahmed, R., Nasir, M. A., Shahbaz, M., & Huynh, N. Q. A. (2021). The nexus between black and digital gold: evidence from US markets. Annals of Operations Research. https://doi.org/10.1007/s10479-021-04192-z

Jalal, R. N. U. D., Alon, I., & Paltrinieri, A. (2021). A bibliometric review of cryptocurrencies as a financial asset. Technology Analysis and Strategic Management. https://doi.org/10.1080/09537325.2021.1939001

Jiang, S., Li, X., & Wang, S. (2021f). Exploring evolution trends in cryptocurrency study: From underlying technology to economic applications. Finance Research Letters, 38, 101532. https://doi.org/10.1016/j.frl.2020.101532

Kaiser, L. (2019h). Seasonality in cryptocurrencies. Finance Research Letters, 31, 232–238. https://doi.org/10.1016/j.frl.2018.11.007

Kajtazi, A., & Moro, A. (2019). The role of bitcoin in well diversified portfolios: A comparative global study. International Review of Financial Analysis, 61, 143–157. https://doi.org/10.1016/j.irfa.2018.10.003

Kalyvas, A., Li, Z., Papakyriakou, P., & Sakkas, A. (2021). If you feel good, I feel good! The mediating effect of behavioral factors on the relationship between industry indices and Bitcoin returns. European Journal of Finance. https://doi.org/10.1080/1351847X.2021.1976665

Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3–6. https://doi.org/10.1016/j.econlet.2017.06.023

Katsiampa, P. (2019). Volatility co-movement between Bitcoin and Ether. Finance Research Letters, 30, 221–227. https://doi.org/10.1016/j.frl.2018.10.005

Keshari Jena, S., Tiwari, A. K., Doğan, B., & Hammoudeh, S. (2020). Are the top six cryptocurrencies efficient? Evidence from time-varying long memory. International Journal of Finance and Economics, November https://doi.org/10.1002/ijfe.2347

Khuntia, S., & Pattanayak, J. K. (2020). Adaptive long memory in volatility of intra-day bitcoin returns and the impact of trading volume. Finance Research Letters, 32, 101077. https://doi.org/10.1016/j.frl.2018.12.025

Khuntia, S., & Pattanayak, J. K. (2021). Adaptive calendar effects and volume of extra returns in the cryptocurrency market. International Journal of Emerging Markets. https://doi.org/10.1108/IJOEM-06-2020-0682

Kim, W., Lee, J., & Kang, K. (2020). The effects of the introduction of Bitcoin futures on the volatility of Bitcoin returns. Finance Research Letters, 33, 101204. https://doi.org/10.1016/j.frl.2019.06.002

Kissell, R. (2014). Chapter 2 - Market Microstructure (R. B. T.-T. S. of A. T. and P. M. Kissell (ed.); pp. 47–85). Academic Press. https://doi.org/10.1016/B978-0-12-401689-7.00002-7

Köchling, G., Müller, J., & Posch, P. N. (2019a). Does the introduction of futures improve the efficiency of Bitcoin? Finance Research Letters, 30, 367–370. https://doi.org/10.1016/j.frl.2018.11.006

Köchling, G., Müller, J., & Posch, P. N. (2019b). Price delay and market frictions in cryptocurrency markets. Economics Letters, 174, 39–41. https://doi.org/10.1016/j.econlet.2018.10.025

Kostika, E., & Laopodis, N. T. (2020). Dynamic linkages among cryptocurrencies, exchange rates and global equity markets. Studies in Economics and Finance, 37(2), 243–265. https://doi.org/10.1108/SEF-01-2019-0032

Koutmos, D. (2018a). Bitcoin returns and transaction activity. Economics Letters, 167, 81–85. https://doi.org/10.1016/j.econlet.2018.03.021

Koutmos, D. (2018b). Liquidity uncertainty and Bitcoin’s market microstructure. Economics Letters, 172, 97–101. https://doi.org/10.1016/j.econlet.2018.08.041

Kozlowski, S. E., Puleo, M. R., & Zhou, J. (2021). Cryptocurrency return reversals. Applied Economics Letters, 28(11), 887–893. https://doi.org/10.1080/13504851.2020.1784831

Kurka, J. (2019). Do cryptocurrencies and traditional asset classes influence each other? Finance Research Letters, 31, 38–46. https://doi.org/10.1016/j.frl.2019.04.018

Kyriazis, N., Papadamou, S., & Corbet, S. (2020). A systematic review of the bubble dynamics of cryptocurrency prices. Research in International Business and Finance, 54(May), 101254. https://doi.org/10.1016/j.ribaf.2020.101254

Li, X., Li, S., & Xu, C. (2020a). Price clustering in Bitcoin market—An extension. Finance Research Letters. https://doi.org/10.1016/j.frl.2018.12.020

Li, Y., Zhang, W., Xiong, X., & Wang, P. (2020b). Does size matter in the cryptocurrency market? Applied Economics Letters, 27(14), 1141–1149. https://doi.org/10.1080/13504851.2019.1673298

Li, R., Li, S., Yuan, D., & Zhu, H. (2021). Investor attention and cryptocurrency: Evidence from wavelet-based quantile Granger causality analysis. Research in International Business and Finance, 56, 101389. https://doi.org/10.1016/j.ribaf.2021.101389

Liang, X., Yang, Y., & Wang, J. (2016). Internet finance: A systematic literature review and bibliometric analysis. Proceedings of the International Conference on Electronic Business (ICEB), 386–398.

Lim, K.-P., Hooy, C.-W., Chang, K.-B., & Brooks, R. (2016). Factor pricing ofcryptocurrencies. North American Journal of Economics and Finance, 36, 1–28.

Liu, W. (2019j). Portfolio diversification across cryptocurrencies. Finance Research Letters, 29, 200–205. https://doi.org/10.1016/j.frl.2018.07.010

López-Martín, C., Benito Muela, S., & Arguedas, R. (2021). Efficiency in cryptocurrency markets: new evidence. Eurasian Economic Review. https://doi.org/10.1007/s40822-021-00182-5

Luu, T., Huynh, D., Burggraf, T., & Wang, M. (2020). Gold, platinum, and expected Bitcoin returns. Journal of Multinational Financial Management, 56, 100628. https://doi.org/10.1016/j.mulfin.2020.100628

Manahov, V., & Urquhart, A. (2021h). The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets. International Review of Financial Analysis, 73, 101629. https://doi.org/10.1016/j.irfa.2020.101629

Mark, M., Sila, J., & Weber, T. A. (2020). Quantifying endogeneity of cryptocurrency markets. European Journal of Finance. https://doi.org/10.1080/1351847X.2020.1791925

Matkovskyy, R. (2019). Centralized and decentralized bitcoin markets: Euro vs USD vs GBP. Quarterly Review of Economics and Finance, 71, 270–279. https://doi.org/10.1016/j.qref.2018.09.005

Mbanga, C. L. (2019). The day-of-the-week pattern of price clustering in Bitcoin. Applied Economics Letters, 26(10), 807–811. https://doi.org/10.1080/13504851.2018.1497844

Mensi, W., Al-Yahyaee, K. H., & Kang, S. H. (2019a). Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum. Finance Research Letters, 29, 222–230. https://doi.org/10.1016/j.frl.2018.07.011

Mensi, W., Lee, Y. J., Al-Yahyaee, K. H., Sensoy, A., & Yoon, S. M. (2019b). Intraday downward/upward multifractality and long memory in Bitcoin and Ethereum markets: An asymmetric multifractal detrended fluctuation analysis. Finance Research Letters, 31(March), 19–25. https://doi.org/10.1016/j.frl.2019.03.029

Mensi, W., Rehman, M. U., Al-Yahyaee, K. H., Al-Jarrah, I. M. W., & Kang, S. H. (2019c). Time frequency analysis of the commonalities between Bitcoin and major cryptocurrencies: Portfolio risk management implications. North American Journal of Economics and Finance, 48(March), 283–294. https://doi.org/10.1016/j.najef.2019.02.013

Merediz-Solá, I., & Bariviera, A. F. (2019). A bibliometric analysis of bitcoin scientific production. Research in International Business and Finance, 50(May), 294–305. https://doi.org/10.1016/j.ribaf.2019.06.008

Milunovich, G. (2018). Cryptocurrencies, mainstream asset classes and risk factors: A study of connectedness. Australian Economic Review, 51(4), 551–563. https://doi.org/10.1111/1467-8462.12303

Morillon, T. (2021). Bitcoin’s value proposition: Shorting expansionary monetary policies. Studies in Economics and Finance, May. https://doi.org/10.1108/SEF-03-2021-0107

Morisse, M. (2015). Cryptocurrencies and bitcoin: Charting the research landscape. 2015 Americas Conference on Information Systems, AMCIS 2015, 1–16.

Noda, A. (2021). On the evolution of cryptocurrency market efficiency. Applied Economics Letters, 28(6), 433–439. https://doi.org/10.1080/13504851.2020.1758617

Panagiotidis, T., Stengos, T., & Vravosinos, O. (2019k). The effects of markets, uncertainty and search intensity on bitcoin returns. International Review of Financial Analysis, 63, 220–242. https://doi.org/10.1016/j.irfa.2018.11.002

Phillip, A., Chan, J., & Peiris, S. (2018). A new look at cryptocurrencies. Economics Letters, 163, 6–9. https://doi.org/10.1016/j.econlet.2017.11.020

Platanakis, E., Sutcliffe, C., & Urquhart, A. (2018). Optimal vs naïve diversification in cryptocurrencies. Economics Letters, 171, 93–96. https://doi.org/10.1016/j.econlet.2018.07.020

Rahardja, U., Aini, Q., Purnamaharahap, E., & Raihan, R. (2021). Good, bad and dark bitcoin. Aptisi Transactions on Technopreneurship (ATT), 3(2), 115–119.

Rehman, M. U. (2020j). Do bitcoin and precious metals do any good together? An extreme dependence and risk spillover analysis. Resources Policy, 68, 101737. https://doi.org/10.1016/j.resourpol.2020.101737

Rejeb, A., Rejeb, K., Keogh, G., & J. (2021). Cryptocurrencies in modern finance: A literature review. Etikonomi, 20(1), 93–118.

Rialti, R., Marzi, G., Ciappei, C., & Busso, D. (2019). Big data and dynamic capabilities: A bibliometric analysis and systematic literature review. Management Decision, 57(8), 2052–2068. https://doi.org/10.1108/MD-07-2018-0821

Sadeghi Moghadam, M. R., Safari, H., & Yousefi, N. (2021). Clustering quality management models and methods: Systematic literature review and text-mining analysis approach. Total Quality Management and Business Excellence, 32(3–4), 241–264. https://doi.org/10.1080/14783363.2018.1540927

Sapkota, N., & Grobys, K. (2021). Asset market equilibria in cryptocurrency markets: Evidence from a study of privacy and non-privacy coins Journal of International Financial Markets. Institutions and Money, 74, 101402. https://doi.org/10.1016/j.intfin.2021.101402

Sarpong, M. A. (2022). A review of cryptocurrencies research. International Journal of Blockchains and Cryptocurrencies, 3(2), 131–140.

Sensoy, A. (2019l). The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies. Finance Research Letters, 28, 68–73. https://doi.org/10.1016/j.frl.2018.04.002

Shahzad, S. J. H., Bouri, E., Ahmad, T., Naeem, M. A., & Vo, X. V. (2021). The pricing of bad contagion in cryptocurrencies: A four-factor pricing model. Finance Research Letters, 41, 101797. https://doi.org/10.1016/j.frl.2020.101797

Shen, D., Urquhart, A., & Wang, P. (2020k). A three-factor pricing model for cryptocurrencies. Finance Research Letters, 34, 101248. https://doi.org/10.1016/j.frl.2019.07.021

Shynkevich, A. (2020). Pricing efficiency and market efficiency of two bitcoin funds. Applied Economics Letters, 27(20), 1623–1628. https://doi.org/10.1080/13504851.2019.1707760

Shynkevich, A. (2021i). Impact of bitcoin futures on the informational efficiency of bitcoin spot market. Journal of Futures Markets, October. https://doi.org/10.1002/fut.22164

Sifat, I. M., Mohamad, A., Mohamed Shariff, M. S., & Bin. (2019). Lead-Lag relationship between Bitcoin and Ethereum: Evidence from hourly and daily data. Research in International Business and Finance, 50(June), 306–321. https://doi.org/10.1016/j.ribaf.2019.06.012

Silva, E. C., & Da Silva, M. M. (2022). Motivations to regulate cryptocurrencies: A systematic literature review of stakeholders and drivers. International Journal of Blockchains and Cryptocurrencies, 2(4), 360–388.

Sousa, A., Calçada, E., Rodrigues, P., & Pinto Borges, A. (2022). Cryptocurrency adoption: A systematic literature review and bibliometric analysis. EuroMed Journal of Business. https://doi.org/10.1108/EMJB-01-2022-0003

Su, X., Zhan, W., & Li, Y. (2021). Quantile dependence between investor attention and cryptocurrency returns: Evidence from time and frequency domain analyses. Applied Economics, 00(00), 1–33. https://doi.org/10.1080/00036846.2021.1940826

Subramaniam, S., & Chakraborty, M. (2020). Investor attention and cryptocurrency returns: Evidence from quantile causality approach. Journal of Behavioral Finance, 21(1), 103–115. https://doi.org/10.1080/15427560.2019.1629587

Takaishi, T. (2020). Rough volatility of Bitcoin. Finance Research Letters, 32, 101379. https://doi.org/10.1016/j.frl.2019.101379

Takaishi, T., & Adachi, T. (2018). Taylor effect in Bitcoin time series. Economics Letters, 172, 5–7. https://doi.org/10.1016/j.econlet.2018.07.046

Takaishi, T., & Adachi, T. (2020). Market Efficiency, Liquidity, and Multifractality of Bitcoin: A Dynamic Study. Asia-Pacific Financial Markets, 27(1), 145–154. https://doi.org/10.1007/s10690-019-09286-0

Tan, Z., Huang, Y., & Xiao, B. (2021). Value at risk and returns of cryptocurrencies before and after the crash: long-run relations and fractional cointegration. Research in International Business and Finance, 56, 101347. https://doi.org/10.1016/j.ribaf.2020.101347

Thampanya, N., Nasir, M. A., & Huynh, T. L. D. (2020). Asymmetric correlation and hedging effectiveness of gold & cryptocurrencies: From pre-industrial to the 4th industrial revolution✰. Technological Forecasting and Social Change, 159, 120195. https://doi.org/10.1016/j.techfore.2020.120195

Tiwari, A. K., Kumar, S., & Pathak, R. (2019). Modelling the dynamics of Bitcoin and Litecoin: GARCH versus stochastic volatility models. Applied Economics, 51(37), 4073–4082. https://doi.org/10.1080/00036846.2019.1588951

Tiwari, A. K., Adewuyi, A. O., Albulescu, C. T., & Wohar, M. E. (2020). Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies. North American Journal of Economics and Finance, 51, 101083. https://doi.org/10.1016/j.najef.2019.101083

Tran, V. L., & Leirvik, T. (2020). Efficiency in the markets of crypto-currencies. Finance Research Letters, 35, 101382. https://doi.org/10.1016/j.frl.2019.101382

Troster, V., Tiwari, A. K., Shahbaz, M., & Macedo, D. N. (2019). Bitcoin returns and risk: A general GARCH and GAS analysis. Finance Research Letters, 30, 187–193. https://doi.org/10.1016/j.frl.2018.09.014

Tu, Z., & Xue, C. (2019m). Effect of bifurcation on the interaction between Bitcoin and Litecoin. Finance Research Letters, 31, 382–385. https://doi.org/10.1016/j.frl.2018.12.010

Tzouvanas, P., Kizys, R., & Tsend-Ayush, B. (2020). Momentum trading in cryptocurrencies: Short-term returns and diversification benefits. Economics Letters, 191, 108728. https://doi.org/10.1016/j.econlet.2019.108728

Urquhart, A. (2017). Price clustering in Bitcoin. Economics Letters, 159, 145–148. https://doi.org/10.1016/j.econlet.2017.07.035

Urquhart, A., & Zhang, H. (2019). Is Bitcoin a hedge or safe haven for currencies? An intraday analysis. International Review of Financial Analysis, 63(February), 49–57. https://doi.org/10.1016/j.irfa.2019.02.009

van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7

Vidal-Tomás, D. (2021). An investigation of cryptocurrency data: the market that never sleeps. Quantitative Finance. https://doi.org/10.1080/14697688.2021.1930124

Vidal-Tomás, D., Ibáñez, A. M., & Farinós, J. E. (2019a). Weak efficiency of the cryptocurrency market: A market portfolio approach. Applied Economics Letters, 26(19), 1627–1633. https://doi.org/10.1080/13504851.2019.1591583

Vidal-Tomás, D., Ibáñez, A. M., & Farinós, J. E. (2019b). Herding in the cryptocurrency market: CSSD and CSAD approaches. Finance Research Letters, 30, 181–186. https://doi.org/10.1016/j.frl.2018.09.008

Wang, P., Zhang, W., Li, X., & Shen, D. (2019). Is cryptocurrency a hedge or a safe haven for international indices? A comprehensive and dynamic perspective. Finance Research Letters, 31(January), 1–18. https://doi.org/10.1016/j.frl.2019.04.031

Wei, W. C. (2018a). Liquidity and market efficiency in cryptocurrencies. Economics Letters, 168, 21–24. https://doi.org/10.1016/j.econlet.2018.04.003

Wei, W. C. (2018b). The impact of Tether grants on Bitcoin. Economics Letters, 171, 19–22. https://doi.org/10.1016/j.econlet.2018.07.001

Wu, X., Wu, L., & Chen, S. (2021). Long memory and efficiency of Bitcoin during COVID-19. Applied Economics, 00(00), 1–15. https://doi.org/10.1080/00036846.2021.1962513

Yang, Y., & Zhao, Z. (2021). Large cryptocurrency-portfolios: Efficient sorting with leverage constraints. Applied Economics, 53(21), 2398–2411. https://doi.org/10.1080/00036846.2020.1859457

Yaya, O. O. S., Ogbonna, A. E., Mudida, R., & Abu, N. (2021). Market efficiency and volatility persistence of cryptocurrency during pre- and post-crash periods of Bitcoin: Evidence based on fractional integration. International Journal of Finance and Economics, 26(1), 1318–1335. https://doi.org/10.1002/ijfe.1851

Yue, Y., Li, X., Zhang, D., & Wang, S. (2021a). How cryptocurrency affects economy? A network analysis using bibliometric methods. International Review of Financial Analysis, 77(71988101), 101869. https://doi.org/10.1016/j.irfa.2021.101869

Yue, W., Zhang, S., & Zhang, Q. (2021b). Asymmetric News Effects on Cryptocurrency Liquidity: an Event Study Perspective. Finance Research Letters, 41, 101799. https://doi.org/10.1016/j.frl.2020.101799

Zhang, W., Wang, P., Li, X., & Shen, D. (2018). Some stylized facts of the cryptocurrency market. Applied Economics, 50(55), 5950–5965. https://doi.org/10.1080/00036846.2018.1488076

Zhang, S., Aerts, W., Lu, L., & Pan, H. (2019). Readability of token whitepaper and ICO first-day return. Economics Letters, 180, 58–61. https://doi.org/10.1016/j.econlet.2019.04.010

Zhang, S., Hou, X., & Ba, S. (2021). What determines interest rates for bitcoin lending? Research in International Business and Finance. https://doi.org/10.1016/j.ribaf.2021.101443