Cryopreservation of mature zygotic embryos, shoot bud regeneration, and field establishment of Pinus elliottii var. elliottii x Pinus caribaea var. hondurensis in vitro-derived plants
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aitken-Christie J, Singh AP, Davies H (1988) Multiplication of meristematic tissue: a new tissue culture system for radiate pine. In: Hanover JW, Keathley DE (eds) Genetic Manipulation of Woody Plants. Plenum Press, New York and London, pp 413–432
Alvarez JM, Bueno N, Cuesta C, Feito I, Ordás RJ (2020) Hormonal and gene dynamics in de novo shoot meristem formation during adventitious caulogenesis in cotyledons of Pinus pinea. Plant Cell Rep 39:527–541. https://doi.org/10.1007/s00299-020-02508-0
Ayala PG, Brugnoli EA, Luna CV, González AM, Pezzutti R, Sansberro PA (2019) Eucalyptus nitens plant regeneration from seedling explants through direct adventitious shoot bud formation. Trees 33:1667–1678. https://doi.org/10.1007/s00468-019-01888-5
Balzarini M, Di Rienzo J (2013) Info-Gen: software para análisis estadístico de datos genéticos. Universidad Nacional de Córdoba, Argentina, Facultad de Ciencias Agropecuarias
Bidabadi SS, Jain SM (2020) Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants 9:702. https://doi.org/10.3390/plants9060702
Bonga JM (2015) A comparative evaluation of the application of somatic embryogenesis, rooting of cuttings, and organogenesis of conifers. Can J for Res 45:1–5. https://doi.org/10.1139/cjfr-2014-0360
Bonga JM (2016) Conifer clonal propagation in tree improvement programs. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative Propagation of Forest Trees. National Institute of Forest Science (NIFos), Seoul, Korea
Brugnoli E, Urbani M, Quarin C, Martínez E, Acuña C (2013) Diversity in diploid, tetraploid, and mixed diploid–tetraploid populations of Paspalum simplex. Crop Sci 53:1509–1516. https://doi.org/10.2135/cropsci2012.08.0497
Bueno N, Cuesta C, Centeno ML, Ordás RJ, Alvarez JM (2021) In Vitro plant regeneration in conifers: the role of WOX and KNOX gene families. Genes 12:438. https://doi.org/10.3390/genes12030438
Cappa EP, Marcó M, Nikles G, Last IS (2013) Performance of Pinus elliottii, Pinus caribaea, their F1, F2 and backcross hybrids and Pinus taeda to 10 years in the Mesopotamia region, Argentina. New for 44:197–218. https://doi.org/10.1007/s11056-012-9311
Díaz-Sala C (2019) Molecular dissection of the regenerative capacity of forest tree species: special focus on conifers. Front Plant Sci 9:1943. https://doi.org/10.3389/fpls.2018.01943
Dieters M, Brawner J (2007) Productivity of Pinus elliottii, P. caribaea and their F1 and F2 hybrids to 15 years in Queensland. Australia Ann for Sci 64:691–698. https://doi.org/10.1051/forest:2007049
Dietrich RC, Bengough AG, Jones HG, White PJ (2013) Can root electrical capacitance be used to predict root mass in soil? Ann Bot 112:457–464. https://doi.org/10.1093/aob/mct044
Doyle J, Verhoeven R (2002) Germ-furrow morphology and storage conditions determine the degree of viability of Pinus caribaea pollen. S Afr J Bot 68:457–463. https://doi.org/10.1016/S0254-6299(15)30374-4
Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606. https://doi.org/10.1016/j.tplants.2011.08.004
Forte NB (2011) Clonación de Pinus elliottii var. elliottii x Pinus caribaea var. hondurensis mediante el uso de biorreactores de inmersión temporal. Tesis para optar al grado de Magíster en Manejo de Recursos Forestales, Universidad nacional del Nordeste
Gauchat ME, Rodriguez G (2005) Pinus elliottii var. elliottii x P. caribaea var. hondurensis. Híbridos de alta productividad combinando crecimiento y forma. IDIA 21:162–164
González AM, Cristóbal CL (1997) Anatomía y ontogenia de semillas de Helicteres lhotzkyana (Sterculiaceae). Bomplandia 9:287–294
Greer DH, Robinson LA, Hall AJ, Klages K, Donnison H (1998) Frost hardening of Pinus radiata seedlings: effects of temperature on relative growth rate, carbon balance and carbohydrate concentration. Tree Physiol 20:107–114
Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicum esculentum (Tomato). Planta 107:161–170
Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: A multi-dimensional plant growth regulator. Afr J Biotech 10:8984–9000. https://doi.org/10.5897/AJB11.636
Haines RJ, Nikles DG (1987) Mass propagation of superior families and individual genotypes of some conifers in Queensland. Aust for 50:106–111
Harding K, Copley T (2000) Wood property variation in Queensland-grown slash × Caribbean pine hybrids. In: Dungey HS, Dieters MJ, Nikles DG (eds) Hybrid Breeding and Genetics of Forest Trees. Proceedings of QFRI/CRC-SPF Symposium, 9–14 Abril 2000. Queensland, Australia, pp 160–167
Hargreaves C, Grace L, van der Maas S, Reeves C, Holden G, Menzies M, Kumar S, Foggo M (2004) Cryopreservation of Pinus radiata zygotic embryo cotyledons: effect of storage duration on adventitious shoot formation and plant growth after two years in the field. Can J for Res 34:600–608. https://doi.org/10.1139/X03-226
Hargreaves C, Grace L, van der Maas S, Menzies M, Kumar S, Holden G, Foggo M, Low C, Dibley Mike J (2005) Comparative in vitro and early nursery performance of adventitious shoots from cryopreserved cotyledons and axillary shoots from epicotyls of the same zygotic embryo of control-pollinated Pinus radiata. Can J for Res 35:2629–2641
Humánez A, Blasco M, Brisa C, Segura J, Arrillaga I (2011) Thidiazuron enhances axillary and adventitious shoot proliferation in juvenile explants of Mediterranean provenances of maritime pine Pinus pinaster. In Vitro Cell Dev Biol-Plant 47:569–577. https://doi.org/10.1007/s11627-011-9397-9
ISTA (2012) International rules for seed testing. Seed Sci Technol 31, Supplement. Zürich.
Kakani A, Li G, Peng Z (2009) Role of AUX1 in the control of organ identity during in vitro organogenesis and in mediating tissue specific auxin and cytokinin interaction in arabidopsis. Planta 229:645–657. https://doi.org/10.1007/s00425-008-0846-6
Kamra SK (1972) Comparative studies on germinability of Pinus silvestris and Picea abies seed by the indigo carmine and X-ray contrast methods. Stud for Suec 99:1–21
Lambardi M, Sharma KK, Thorpe TA (1993) Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine (Pinus halepensis Mill.). In Vitro Cell Dev Biol Plant 29:189–199
López-Upton J, White TL, Huber DA (1999) Taxon and family differences in survival, cold hardiness, early growth, and rust incidence of loblolly pine, slash pine and some pine hybrids. Silvae Genetica 48:303–313
Lorenzo J, González J, Escalona M, Teisson C, Espinosa P, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tiss Org Cult 54:197–200
Loriaux SD, Avenson TJ, Welles JM, McDermitt DK, Eckles RD, Riensche B, Genty B (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant Cell Environ 36:1751–1754. https://doi.org/10.1111/pce.12115
Meyer HJ (1998) In vitro formation of adventitious buds on mature embryos of Pinus elliottii Engelm. x P. caribaea Morelet hybrids. S Afr J Bot 64:220–225. https://doi.org/10.1016/S0254-6299(15)30872-3
Mitchell RG (2002) The effect of bottom heat on rooting Pinus patula and Pinus elliottii x Pinus caribaea stem cuttings in South Africa. Southern African for J 196:21–25. https://doi.org/10.1080/20702620.2002.10434614
Moncaleán P, Alonso P, Centeno ML, Cortizo M, Rodríguez A, Fernández B, Ordás RJ (2005) Organogenic responses of Pinus pinea cotyledons to hormonal treatments: BA metabolism and cytokinin content. Tree Physiol 25:1–9. https://doi.org/10.1093/treephys/25.1.1
Montalbán IA, De Diego N, Moncaleán P (2011) Testing novel cytokinins for improved in vitro adventitious shoots formation and subsequent ex vitro performance in Pinus radiata. Forestry 84:363–373. https://doi.org/10.1093/forestry/cpr022
Motte H, Vereecke D, Geelen D, Werbrouck S (2014) The molecular path to in vitro shoot regeneration. Biotechnol Adv 32:107–121. https://doi.org/10.1016/j.biotechadv.2013.12.002
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497
Nikles DG (2000) Experience with some Pinus hybrids in Queensland, Australia. In: Dungey HS, Dieters MJ, Nikles DG (eds) Proceedings of QFRI/CRC-SPF Symposium: Hybrid Breeding and Genetics of Forest Trees. Noosa, Queensland Australia pp 27–43
Nunes S, Maruma L, Farinha N, Tolentino Pereira V, Almeida T, Dias MC, Santos C (2017) Plant regeneration from ploidy-stable cryopreserved embryogenic lines of the hybrid Pinus elliottii x P. caribaea. Ind Crops Prod 105:215–224. https://doi.org/10.1016/j.indcrop.2017.05.015
Nunes S, Marum L, Farinha N, Pereira VT, Almeida T, Sousa D, ManoN FJ, Dias MC, Santos C (2018) Somatic embryogenesis of hybrid Pinus elliottii var. elliottii × P. caribaea var. hondurensis and ploidy assessment of somatic plants. Plant Cell Tiss Organ Cult 132:71–84. https://doi.org/10.1007/s11240-017-1311-7
Park Y-S, Beaulieu J, Bousquet J (2016) Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative Propagation of Forest Trees. National Institute of Forest Science (NiFos), Seoul, Korea, pp 302–322
Pereira C, Montalbán IA, Pedrosa A, Tavares J, Pestryakov A, Bogdanchikova N, Canhoto J, Moncaleán P (2021) Regeneration of Pinus halepensis (Mill.) through organogenesis from apical shoot buds. Forests 12:363. https://doi.org/10.3390/f12030363
Quoirin M, Lepoivre P (1977) Études des milieux adaptés aux cultures in vitro de Prunus. Acta Hortic 78:437–442
Ragonezi C, Klimaszewska K, Castro MR, Lima M, de Oliveira P, Zavattieri MA (2010) Adventitious rooting of conifers: influence of physical and chemical factors. Trees 24:975–992. https://doi.org/10.1007/s00468-010-0488-8
Raspor M, Motyka V, Kaleri AR, Ninkovic S, Tubic L, Cingel A, Cosic T (2021) Integrating the roles for cytokinin and auxin in de novo shoot organogenesis: from hormone uptake to signalling outputs. Int J Mol Sci 22:8554. https://doi.org/10.3390/ijms22168554
Rocha P, Niella F (2004) Rooting induction treatment effects in slash x caribean pine and loblolly pine cuttings. Yvyrareta 12:50–54
Roden JS, Canny MJ, Huang CX, Ball MC (2008) Frost tolerance and ice formation in Pinus radiata needles: ice management by the endodermis and transfusion tissues. Functional Plant Biol 36:180–189. https://doi.org/10.1071/FP08247
Sang YL, Cheng ZJ, Zhang XS (2018) Plant stem cells and de novo organogenesis. New Phytol 218:1334–1339. https://doi.org/10.1111/nph.15106
Shepherd M, Mellick R, Toon P, Dale G, Dieters M (2005) Genetic control of adventitious rooting on stem cuttings in two Pinus elliottii × P. caribaea hybrid families. Ann for Sci 62:403–412. https://doi.org/10.1051/forest:2005036
Sommer HE, Brown CL, Kormanik PP (1975) Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue cultured in vitro. Bot Gaz 136:196–200. https://doi.org/10.1086/336802
Tang W, Newton RJ, Charles TM (2006) Plant regeneration through multiple adventitious shoot differentiation from callus cultures of slash pine (Pinus elliottii). J Plant Physiol 163:98–101. https://doi.org/10.1016/j.jplph.2005.04.030
Tian X, Zhang C, Xu J (2018) Control of cell fate reprogramming towards de novo shoot organogenesis. Plant Cell Physiol 59:713–719. https://doi.org/10.1093/pcp/pcx207
Trueman SJ (2006) Clonal propagation and storage of subtropical pines in Queensland, Australia. S Afr for J 208:49–52. https://doi.org/10.2989/10295920609505261
Verma P, Majee M (2013) Seed germination and viability test in tetrazolium (TZ) assay. Bio Protocol 3:884