Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity

American Journal of Physiology - Endocrinology and Metabolism - Tập 295 Số 1 - Trang E17-E28 - 2008
Ronald J. Copeland1, John Bullen2, Gerald W. Hart2
1Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe St. Baltimore, MD 21205-2185, USA
2Johns Hopkins University

Tóm tắt

O-linked β- N-acetylglucosamine ( O-GlcNAc) is a dynamic posttranslational modification that, analogous to phosphorylation, cycles on and off serine and/or threonine hydroxyl groups. Cycling of O-GlcNAc is regulated by the concerted actions of O-GlcNAc transferase and O-GlcNAcase. GlcNAcylation is a nutrient/stress-sensitive modification that regulates proteins involved in a wide array of biological processes, including transcription, signaling, and metabolism. GlcNAcylation is involved in the etiology of glucose toxicity and chronic hyperglycemia-induced insulin resistance, a major hallmark of type 2 diabetes. Several reports demonstrate a strong positive correlation between GlcNAcylation and the development of insulin resistance. However, recent studies suggest that inhibiting GlcNAcylation does not prevent hyperglycemia-induced insulin resistance, suggesting that other mechanisms must also be involved. To date, proteomic analyses have identified more than 600 GlcNAcylated proteins in diverse functional classes. However, O-GlcNAc sites have been mapped on only a small percentage (<15%) of these proteins, most of which were isolated from brain or spinal cord tissue and not from other metabolically relevant tissues. Mapping the sites of GlcNAcylation is not only necessary to elucidate the complex cross-talk between GlcNAcylation and phosphorylation but is also key to the design of site-specific mutational studies and necessary for the generation of site-specific antibodies, both of which will help further decipher O-GlcNAc's functional roles. Recent technical advances in O-GlcNAc site-mapping methods should now finally allow for a much-needed increase in site-specific analyses to address the functional significance of O-GlcNAc in insulin resistance and glucose toxicity as well as other major biological processes.

Từ khóa


Tài liệu tham khảo

10.1093/glycob/cwl067

10.2337/diabetes.48.12.2407

Albert T, Urlbauer B, Kohlhuber F, Hammersen B, Eick D.Ongoing mutations in the N-terminal domain of c-Myc affect transactivation in Burkitt's lymphoma cell lines.Oncogene9: 759–763, 1994.

10.1074/jbc.M701762200

10.1074/mcp.M500314-MCP200

10.1126/science.290.5500.2302

10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N

10.1210/er.2003-0026

10.1016/0014-5793(74)81206-8

10.1152/ajpendo.00329.2005

10.1152/ajpendo.00060.2002

10.1016/S1043-2760(02)00039-5

10.1152/ajpcell.00162.2006

10.1021/bi000755i

10.1074/jbc.270.32.18961

10.1074/jbc.M303810200

10.3233/JAD-2006-10113

10.1126/science.1151363

10.1039/b704905f

Dong DL, Hart GW.Purification and characterization of an O-GlcNAc selective N-acetyl-beta-d-glucosaminidase from rat spleen cytosol.J Biol Chem269: 19321–19330, 1994.

10.1172/JCI11235

10.1073/pnas.97.22.12222

10.1161/01.CIR.0000023043.02648.51

10.1073/pnas.0601931103

10.1016/S0003-9861(03)00234-0

10.1074/jbc.M010420200

10.2337/diabetes.49.5.863

10.1210/en.2005-0523

10.1016/S0955-0674(97)80015-4

10.1194/jlr.R700007-JLR200

Gross BJ, Swoboda JG, Walker S.A strategy to discover inhibitors of O-linked glycosylation.J Am Chem Soc130: 440–441, 2007.

10.1073/pnas.90.8.3216

Haltiwanger RS, Blomberg MA, Hart GW.Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase.J Biol Chem267: 9005–9013, 1992.

10.1074/jbc.273.6.3611

Haltiwanger RS, Holt GD, Hart GW.Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase.J Biol Chem265: 2563–2568, 1990.

10.1073/pnas.0408771102

10.1006/abbi.1998.1016

10.1038/nature05815

10.1074/jbc.272.8.4889

10.1172/JCI119390

10.1152/ajpendo.2000.278.1.E103

10.1093/hmg/7.12.1859

10.1146/annurev.cb.11.110195.001103

Holt GD, Hart GW.The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc.J Biol Chem261: 8049–8057, 1986.

Housley MP, Rodgers JT, Puigserver P, Hart GW.Elevated O-GlcNAc cycling on FOXO1A mediates inappropriate hepatic gluconeogenesis (Abstract).FASEB J20: A955, 2006.

10.1074/jbc.M802240200

10.1074/jbc.273.32.20658

10.1161/01.RES.0000165478.06813.58

10.1074/jbc.M209384200

10.1021/bi020685a

10.1016/0092-8674(88)90015-3

10.1038/nsmb833

10.1126/science.3059495

10.1074/jbc.M201729200

10.1021/ja038545r

10.1038/nchembio881

10.1073/pnas.0403471101

10.1021/ja076038u

10.1021/ja960826u

10.1042/bj3560031

10.1016/S0006-291X(02)00200-0

Kornfeld R.Studies onl-glutamined-fructose 6-phosphate amidotransferase. I. Feedback inhibition by uridine diphosphate-N-acetylglucosamine.J Biol Chem242: 3135–3141, 1967.

10.1074/jbc.272.14.9308

10.1074/jbc.274.45.32015

10.1016/S0304-4165(99)00105-1

10.2337/diabetes.54.4.1214

10.1074/jbc.M411863200

10.1016/S0303-7207(02)00155-7

Love DC, Hanover JA.The hexosamine signaling pathway: deciphering the “O-GlcNAc code”.Sci STKE2005: re13, 2005.

10.1074/jbc.272.14.9316

10.1074/jbc.275.15.10983

10.1074/jbc.274.2.1011

10.1126/science.1075762

Marshall S, Bacote V, Traxinger RR.Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance.J Biol Chem266: 4706–4712, 1991.

10.1016/S1056-8727(01)00188-X

10.1073/pnas.152346899

10.1093/glycob/8.4.383

10.1016/j.bbapap.2006.10.003

10.1007/s100480050025

10.1073/pnas.0502488102

10.1074/jbc.M312139200

10.1074/jbc.M207787200

10.2337/diabetes.48.8.1562

10.1038/ncpendmet0366

10.1038/nchembio.68

10.1152/ajpendo.00569.2006

10.1021/bi951918j

10.1006/bbrc.2000.3082

10.1210/endo.141.6.7566

10.1073/pnas.100471497

Shanmugasundaram B, Debowski AW, Dennis RJ, Davies GJ, Vocadlo DJ, Vasella A.Inhibition of O-GlcNAcase by a gluco-configured nagstatin and a PUGNAc-imidazole hybrid inhibitor.Chem Commun (Camb)13: 4372–4374, 2006.

10.1016/j.sbi.2003.08.003

10.1002/jcb.20676

10.1016/j.cellsig.2007.09.002

10.1073/pnas.0402700101

Szkudelski T.The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas.Physiol Res50: 537–546, 2001.

Torres CR, Hart GW.Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc.J Biol Chem259: 3308–3317, 1984.

Traxinger RR, Marshall S.Coordinated regulation of glutamine:fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation.J Biol Chem266: 10148–10154, 1991.

10.1074/jbc.M605064200

10.1073/pnas.1632821100

10.1002/pmic.200401066

10.1074/mcp.T500040-MCP200

10.1073/pnas.072072399

10.1152/ajpendo.00382.2002

10.1074/mcp.M600453-MCP200

10.2337/diabetes.52.3.650

10.1074/jbc.M109656200

10.1074/jbc.M406481200

10.1074/mcp.M200048-MCP200

10.1126/science.1058714

10.2337/diabetes.55.01.06.db05-0633

10.1016/S0076-6879(06)15008-9

10.1093/glycob/cwj096

10.1021/ja065697o

10.1006/jmbi.2001.5151

10.1042/bj3530245

10.1038/ncb1470

10.1038/nature06668

10.1016/S0026-0495(98)90058-0

10.1161/01.CIR.101.13.1539