Cross‐Bar SnO2‐NiO Nanofiber‐Array‐Based Transparent Photodetectors with High Detectivity

Advanced Electronic Materials - Tập 6 Số 1 - 2020
Zhenghao Long1, Xiaojie Xu1, Wei Yang1, Mingxiang Hu1, Dmitry V. Shtansky2, Dmitri Golberg3,4, Xiaosheng Fang1
1Department of Materials Science, Fudan University Shanghai, 200433, P. R. China
2National University of Science and Technology «MISIS», Moscow 119049, Russia
3International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, 305004 Japan
4Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4000 Australia

Tóm tắt

Abstract

An cross‐bar structure is employed to design a transparent pn junction‐based photodetector. The device consisting of aligned n‐SnO2 and p‐NiO nanofibers is prepared via a mature electrospinning process that is suitable for commercial applications. It exhibits a high detectivity of 2.33 × 1013 Jones under 250 nm illumination at −5 V, outperforming most state‐of‐art SnO2‐based UV photodetectors. It is also endowed with a self‐powered feature due to a photovoltaic effect from the pn junction, resulting in a photocurrent of 10−10 A, responsivity of 30.29 mA W−1 at 0 V bias, and detectivity of 2.24 × 1011 Jones at 0.05 V bias. Moreover, the device is highly transparent (over 90% toward visible light) due to the wide band gap of photoactive materials and well‐designed cross‐bar fiber structure. Additionally, an n‐SnO2‐p‐ZnO:Ag (Ag doped ZnO) self‐powered UV photodetector is fabricated that shows good performance and give another example of the use of the cross‐bar structure.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201401732

Cai S., 2019, Adv. Mater., 31, 1808183

10.1002/adma.201603544

10.1002/adfm.201900314

10.1002/cssc.201702026

10.1021/acsphotonics.8b00486

10.1002/adma.201703238

10.1002/adma.201703279

10.1002/aelm.201800991

10.1038/s41467-019-12707-3

10.1002/adma.201301802

10.1039/C8TC00550H

10.1002/pssr.201700381

10.1039/C7TC01512G

10.1002/adma.201706561

10.1002/smll.201700918

10.1039/C8TC01784K

10.1039/C8TC05877F

10.3390/s90806504

10.1021/acs.jpclett.9b00154

10.1002/smll.201703754

10.1039/C6TC03830A

10.1038/srep03826

Zhao Q., 2019, Mater. Horiz.

10.1039/C7NR01290J

10.1002/adfm.201707178

10.1002/smll.201804346

10.1021/acsami.8b16346

10.1021/acsphotonics.7b01486

10.1002/advs.201600316

10.1007/s00339-019-2590-0

10.1002/adom.201800213

10.1007/s40843-018-9311-9

10.1039/C6TC00887A

10.1039/C8TC01771A

10.1039/C7NR03437G

10.1039/C8MH00500A

10.1016/j.orgel.2016.12.042

10.1038/s41598-017-05981-y

10.1016/j.carbon.2018.05.054

10.1002/adfm.201703166

10.1021/acsami.8b05141

10.1002/adfm.201700264

10.1002/smll.201601913

10.1039/C7TC04754A

10.1039/C7TC03746E

10.1038/s41598-017-05176-5