Creatine kinase in non-muscle tissues and cells

Theo Wallimann1, Wolfram Hemmer1
1Institute for Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zürich, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Eppenberger HM, Dawson DM, Kaplan NO: The comparative enzymology of CKs. I) Isolation and characterization from chicken and rabbit tissues. J Biol Chem 242: 204?209, 1967

Hossle JP, Schlegel J, Wegmann G, Wyss M, Böhlen P, Eppenberger JM, Wallimann T, Perriard JC: Distinct tissue-specific mitochondrial creatine kinases from chicken brain and striated muscle with a conserved CK framework. Biochem Biophys Res Commun 151: 408?416, 1988

Haas RC, Strauss AW: Separate nuclear genes encode sarcomer-specific and ubiquitous human mitochondrial creatine kinase isoenzymes. J Biol Chem 265: 6921?6927, 1990

Wyss M, Smeitink J, Wevers RA, Wallimann T: Mitochondrial creatine kinase: a key enzyme of aerobic metabolism. Biochim Biophys Acta 1102: 119?166, 1992

Turner DC, Wallimann T, Eppenberger HM: A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc Natl Acad Sci USA 70: 702?705, 1973

Wallimann T, Turner DC, Eppenberger HM: Localization of creatine kinase isoenzymes in myofibrils. I Chicken skeletal muscle. J Cell Biol 75: 297?317, 1977

Wallimann T, Moser H, Eppenberger HM: Isoenzyme-specific localization of M-line bound CK in myogenic cells. J Muscle Res Cell Motil 4: 429?441, 1983

Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ?phospho-creatine circuit? for cellular energy homeostasis. Biochem J 281: 21?40, 1992

Wallimann T, Schlösser T, Eppenberger HM: Function of M-line-bound CK as intramyofibrillar ATP regenerator at the receiving end of the phosphocreatine shuttle in muscle. J Biol Chem 259: 5238?5246, 1984

Krause SM, Jacobus WE: Specific enhancement of the cardiac myofibrillar ATPase by bound creatine kinase. J Biol Chem 267: 2480?2486, 1991

Ventura-Clapier R, Mekhfi H, Vassort G: Role of creatine kinase in force development in chemically skinned rat cardiac muscle. J Gen Phys 89: 815?837, 1987

Rossi AM, Eppenberger HM, Volpe P, Cotrufo R, Wallimann T: Muscle-type MM-creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+-uptake and regulate local ATP/ADP ratios. J Biol Chem 265: 5258?5266, 1990

Korge P, Byrd SK, Campbell KB: Functional coupling between sarcoplasmic-reticulum-bound creatine kinase and Ca2+-ATPase. Eur J Biochem 213: 973?980, 1993

Grosse R, Spitzer E, Kupriyanov VV, Saks VA, Repke KRH: Coordinate interplay between (Na+/K+)-ATPase and CK optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle. Biophys Acta 603: 142?156, 1980

Kammermeier H: Why do cells need phosphocreatine and a phosphocreatine shuttle? J Mol Cardiol 19: 115?118, 1987

Wallimann T, Eppenberger HM: Localization and function of M-line-bound creatine kinase: M-band model and creatine phosphate shuttle. In: JW Shay (ed.) Cell and Muscle Motility Vol. 6. Plenum Publ. Co., New York, 1985, pp 239?285

Arrio-Dupont M, Bechet JJ, d'Albis A: A model system of coupled activity of co-immobilized creatine kinase and myosin. Eur J Biochem 207: 951?957, 1992

Jacobus WE, Lehninger AL: Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J Biol Chem 248: 4803?4810, 1973

Jacobs M, Heldt HW, Klingenberg M: High activity of CK in mitochondria from muscle and brain. Evidence for a separate mitochondrial isoenzyme of CK. Biochem Biophys Res Commun 16: 516?521, 1964

Kottke M, Adams V, Wallimann T, Kumar-Nalam V, Brdiczka D: Location and regulation of octameric mitochondrial creatine kinase in the contact sites. Biochim Biophys Acta 1061: 215?225, 1991

Jacob WJ, Biermans W, Bakker A: Mitochondrial contact sites: a dynamic compartment for creatine kinase activity. In: PP De Deyn, B Marescau, V Stalon, IA Qureshi (eds) Guanidino Compounds in Biology and Medicine. J. Libbey, London, 1992, pp 165?174

Jacobus WE: Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Annu Rev Physiol 47: 707?725, 1985

Schlegel J, Wyss M, Eppenberger HM, Wallimann T: Functional studies with the octameric and dimeric form of mitochondrial creatine kinase: differential pH-dependent association of the two oligomeric forms with the inner mitochondrial membrane. J Biol Chem 265: 9221?9227, 1990

Schnyder T, Gross H, Winkler HP, Eppenberger HM, Wallimann T: Structure of the mitochondrial creatine kinase octamer: high resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions. J Cell Biol 112: 95?101, 1991

Rojo M, Hovius R, Demel RA, Nicolay K, Wallimann T: Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes. J Biol Chem 266: 20290?20295, 1991

Erickson-Viitanen S, Geiger PJ, Viitanen P, Bessman SP: Compartmentation of mitochondrial creatine phosphokinase. II The importance of the outer mitochondrial membrane for mitochondrial compartmentation. J Biol Chem 257: 14405?14411, 1982

Saks VA, Kuznetsov AV, Kupriyanov VV, Miceli MV, Jacobus WE: Creatine kinase of rat heart mitochondria: the demonstration of functional coupling to oxidative phosphorylation in an inner membrane preparation. J Biol Chem 260: 7757?7764, 1985

Gellerich FN, Schlame M, Bohnensack R, Kunz W: Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Biochim Biophys Acta 890: 117?126, 1987

Saks VA, Belikova YO, Kuznetsov AV, Kuchua ZA, Branishte TH, Semenovsky ML, Naumov VG: Phosphocreatine pathway for energy transport. ADP diffusion and cardiomyopathy. Am J Physiol Suppl (Oct) 261: 30?38, 1991

Bessman SP, Fonyo A: The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration. Biochem Biophys Res Commun 22: 597?602, 1966

Brdiczka D: Contact sites between mitochondrial envelope membranes. Structure and function in energy- and proteintransport. Biochim Biophys Acta 1071: 291?321, 1991

Gross M, Wallimann T: Kinetics of assembly and dissociation of mitochondrial creatine kinase octamers. A fluorescence study. Biochem 32: 13933?13940, 1993

Bessman SP, Carpenter CL: The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54: 831?862, 1985

Wallimann T, Schnyder T, Schlegel J, Wyss M, Wegmann G, Rossi AM, Hemmer W, Eppenberger HM, Quest AFG: Subcellular compartmentation of creatine kinase isoenzymes, regulation of CK and octameric structure of mitochondrial CK: important aspects of the phosphoryl-creatine circuit. In: RJ Paul, G Elzinga, K Yamada (eds) Progress in Clinical and Biological Research, Vol. 315: ?Muscle Energetics?. A.R. Liss Inc., New York, 1989, pp 159?176

Saks VA, Ventura-Clapier R: Biochemical organization of energy metabolism in muscle. J Biochem Organization 1: 9?29, 1992

Wallimann T: Dissecting the role of creatine kinase. The phenotype of gene knockout mice deficient in a creatine kinase isoform sheds new light on the physiological role of the phosphocreatine circuit. Curr Biol 4: 42?46, 1994

Meyer RA, Sweeney HL, Kushmerick MJ: A simple analysis of the ?phosphocreatine shuttle?. Am J Physiol 246: C365-C377, 1984

Hemmer W, Riesinger I, Wallimann T, Eppenberger HM, Quest AFG: Brain-type creatine kinase in photoreceptor cell outer segments: role of a phosphocreatine circuit in outer segment energy metabolism and phototransduction. J Cell Sci 106: 671?684, 1993

Koretsky AP, Brosnan JM, Chen L, Chen J, VanDyke T: NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Proc Natl Acad Sci USA 87: 3112?3116, 1990

Brosnan JM, Chen L, Wheeler CE, VanDyke T, Koretsky AP: Phosphocreatine protects from a fructose load in transgenic mouse liver expressing creatine kinase. Am J Physiol 260: C1191-C1200, 1991

Miller KR, Halow JM, Koretsky AP: Phosphocreatine protects transgenic mouse liver expressing creatine kinase from hypoxia and issemia. Am J Physiol 265 (6 pt 1): C1544?1551, 1993

Van Deursen J, Heerschap A, Oerlemans F, Ruitenbeek W, Jap P, terLaak H, Wieringa B: Skeletal muscles of mice deficient in M-creatine kinase lack burst activity. Cell 74: 621?631, 1993

Hasselbach W, Oetliker H: Energetics and electrogenicity of the sarcoplasmic reticulum pump. Annu Rev Physiol 45: 325?339, 1983

Läuger P: Ca2+-pump sarcoplasmic reticulum. In: Electrogenic ion pumps, Vol. 5. Sinnauer Assoc. Inc. Publishers, Sunderland, Mass., USA, 1991, pp 226?251

Ventura-Clapier R, Veksler VK, Elizarova GV, Mekhfi H, Levitskaya EL, Saks VA: Contractile properties and creatine kinase activity of myofilaments following ischemia and reperfusion of the rat heart. Biochem Med Metabolic Biol 38: 300?310, 1987

Ventura-Clapier R, Saks VA, Vassort G, Lauer C, Elizarova GV: Reversible MM-creatine kinase binding to cardiac myofibrils. Am J Physiol 253: C444-C455, 1987

Gudbjarnason S, Mathes P, Ravens KG: Functional compartmentation of ATP and creatine phosphate in heart muscle. J Mol Cell Cardiol 1: 325?339, 1970

Morgan HE, Parmeggiani A: Regulation of glycogenolysis in muscle. III Control of muscle glycogen phosphorylase activity. J Biol Chem 239: 2440?2445, 1964

Passoneau JV, Lowry OH: Phosphofructokinase and the Pasteur effect. Biochem Biophys Res Commun 7: 10?15, 1992

Rose IA, Warms JVB, O'Conell EL: Role of inorganic phosphate in stimulating the glucose utilization of human red blood cells. Biochem Biophys Res Commun 15: 33?37, 1964

Meyer RA, Brown TR, Krilowicz BL, Kushmerick MJ: Phosphagen and intracellular pH changes during contraction of creatinedepleted rat muscle. Am J Physiol 250: C264-C274, 1986

Dillon PF, Clark JF: The theory of diazymes and functional coupling of pyruvate kinase and creatine kinase. J Theor Biol 143: 275?284, 1990

Wegmann C, Zanolla E, Eppenberger HM, Wallimann T:In situ compartmentation of creatine kinase in intact sarcomeric muscle: the acto-myosin overlap zone as a molecular sieve. J Muscle Res Cell Motil 13: 420?435, 1992

Van Waarde A, Van den Thillart G, Erkelens C, Addink A, Lugtenburg J: Functional coupling of glycolysis and phosphocreatine utilization in anoxic fish muscle. J Biol Chem 265: 914?923, 1990

Saks VA, Ventura-Clapier R, Huchua ZA, Preobrazhensky AN, Emelin IV: Creatine kinase in regulation of heart function and metabolism. I. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase systems. Biochim Biophys Acta 803: 254?264, 1984

Savabi F: Free creatine available to the creatine phosphate energy shuttle in isolated rat atria. Proc Natl Acad Sci USA 85: 7476?7480, 1988

Gellerich FN, Schlame M, Bohnensack R, Kunz W: Dynamic compartmentation of adenine nucleotides in the mitochondrial intermembrane space of rat-heart mitochondria. Biochim Biophys Acta 890: 117?126, 1987

Zeleznikar RJ, Goldberg ND: Kinetics and compartmentation of energy metabolism in intact skeletal muscle determined from18O-labelling of metabolite phosphoryls. J Biol Chem 266: 15110?15119, 1991

Wyss M, Wallimann T: Metabolite channelling in aerobic metabolism. J Theor Biol 158: 129?132, 1992

Zeleznikar RJ, Heyman RA, Graeff RM, Walseth TF, Dawis SM, Butz EA, Goldberg ND: Evidence for compartmentalized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle. J Biol Chem 265: 300?311, 1990

Yoshizaki K, Watari H, Radda G: Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by31P-NMR. Biochim Biophys Acta 1051: 144?150, 1990

Saks VA, Belikova YO, Kuznetsov AV:In vivo regulation of mitochondrial respiration in cardiomyocytes: specific restrictions for intracellular diffusion of ADP. Biochim Biophys Acta 1074: 302?311, 1991

Saks VA, Rosenstraukh LV, Smirnov VN, Chazov EI: Role of creatine phosphokinase in cellular function and metabolism. Can J Physiol Pharmacol 56: 691?706, 1978

Bessman SP, Geiger PJ: Transport of energy in muscle. The phosphorylcreatine shuttle. Science 211: 448?452, 1981

Bittl JA, Ingwall JS: Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. J Biol Chem 260: 3512?3517, 1985

Perry SB, McAuliffe J, Balschi JA, Hickey PR, Ingwall JS: Velocity of the CK reaction in the neonatal rabbit heart: role of mitochondrial creatine kinase. Biochem 27: 2165?2172, 1988

Brindle KM, Blackledge MJ, Challiss JRA, Radda GK:31P NMR magnetization-transfer measurements of ATP turnover during steady-state isometric contraction in the rat hind limbin vivo. Biochem 28: 4887?4893, 1989

Sauter A, Rudin M: Determination of creatine kinase kinetic parameters in rat brain by NMR-magnetization transfer: correlation with brain function. J Biol Chem 268: 13166?13171, 1993

Shapiro B: The existential decision of a sperm. Cell 49: 293?294, 1987

Wallimann T, Moser H, Zurbriggen B, Wegmann G, Eppenberger HM: Creatine kinase isoenzymes in spermatozoa. J Muscle Res Cell Motil 7: 25?34, 1986

Tombes RM, Shapiro BM: Metabolite channeling: a phosphocreatine shuttle to mediate high energy phosphate transport between sperm mitochondria and tail. Cell 41: 325?334, 1985

Huszar G, Corrales M, Vigue L: Correlation between sperm creatine phosphokinase activity and sperm concentration in normospermic and oligospermic men. Gamete Res 19: 67?75, 1988

Huszar G, Vigue L: Incomplete development of human spermatozoa is associated with increased creatine phosphokinase concentration and abnormal head morphology. Mol Reprod Dev 34: 292?298, 1993

Huszar G, Vigue L, Morshedi M: Sperm creatine phosphokinase M-isoform ratios and fertilizing potential of men: a blinded study of 84 couples treated within vitro fertilization. Fertil Steril 57: 882?888, 1992

Garber AT, Winkfein RJ, Dixon GH: A novel creatine kinase cDNA whose transcript shows enhanced testicular expression. Biochim Biophys Acta 1087: 256?258, 1990

Hammerstedt RH, Lardy HA: The effect of substrate cycling on the ATP yield of sperm glycolysis. J Biol Chem 258: 8759?8768, 1983

Leonardi D, Colpi GM, Campana A, Balerna M: Protein characterization of multi-fraction split-ejaculates. Some physicochemical properties of prostatic and vesicular proteins. Acta Eur Fertil 14: 181?189, 1983

Lee HJ, Fillers WS, Iyengar MR: Phosphocreatine, an intracellular high-energy compound, is found in the extracellular fluid of the seminal visicles in mice and rats. Proc Natl Acad Sci USA 85: 7265?7269, 1988

Lee H, Gong C, Wu S, Iyengar MR: Accumulation of phosphocreatine and creatine in the cells and fluid of mouse seminal vesicles is regulated by testosteron. Biol Reprod 44: 540?545, 1991

Fakih H, MacLusky N, DeCherney A, Wallimann T, Huszar G: Enhancement of human sperm motility and velocityin vitro: effects of calcium and creatine phosphate. Fertil Steril 46: 938?944, 1986

Kavanagh JP, Darby C: Creatine kinase and ATPase in human seminal fluid and prostatic fluid. J Reprod Fertil 68: 51?56, 1983

Asseo PP, Panidis DK, Papadimas JS, Ikkos DG: Creatine kinase in seminal plasma of infertile men: activity and isoenzymes. Int J Androl 4: 431?439, 1981

Tombes RM, Shapiro BM: Enzyme termini of a phospho-creatine shuttle: purification and characterization of two creatine kinase isoenzymes from sea urchin sperm. J Biol Chem 262: 16011?16019, 1987

Wothe DD, Charbonneau H, Shapiro BM: The phosphocreatine shuttle of sea urchin sperm: flagellar creatine kinase resulted from a gene triplication. Proc Natl Acad Sci USA 87: 5203?5207, 1990

Mühlebach SM, Gross M, Wirz T, Wallimann T, Perriard JC, Wyss M: Sequence homology and structure predictions of the creatine kinase isoenzymes. Mol Cell Biol 133/134: 245?262, 1994

Quest AFG, Shapiro B: Membrane-associated sperm flagellar creatine kinase cytosolic isoforms in a phosphocreatine shuttle. J Biol Chem 266: 19803?19811, 1991

Quest AFG, Chadwick JK, Wothe DD, McIlhinney RAJ, Shapiro BM: Myristoylation of flagellar creatine kinase in the sperm phosphocreatine shuttle is linked to its membrane association properties. J Biol Chem 267: 15080?15085, 1992

Tombes RM, Farr A, Shapiro BM: Sea urchin sperm creatine kinase: the flagellar isoenzyme is a microtubule-associated protein. Exp Cell Res 178: 307?317, 1988

Christen R, Schackmann RW, Dahlquist FW, Shapiro BM:31P-NMR analysis of sea urchin sperm activation: reversible formation of high energy phosphate compounds by changes in intracellular pH. Exp Cell Res 149: 289?294, 1983

Tombes RM, Brokaw CJ, Shapiro BM: CK-dependent energy transport in sea urchin spermatozoa. Flagellar wave attenuation and theoretical analysis of high energy phosphate diffusion. Biophys J 52: 75?86, 1987

Blum H, Nioka S, Johnson RG: Activation of the Na+,K+-ATPase inNarcine brasiliensis. Proc Natl Acad Sci USA 87: 1247?1251, 1990

Carneiro LH, Hasson-Voloch A: Creatine kinase from the electric organ ofElectrophorus electricus: Isoenzyme analysis. Int J Biochem 15: 111?114, 1983

Barrantes FJ, Mieskes G, Wallimann T: A membrane-associated CK identified as an acidic species of the non-receptor, peripheral v-proteins inTorpedo acetylcholine receptor membranes. FEBS Lett 152: 270?275, 1983

West BL, Babbitt PC, Mendez B, Baxter JD: Creatine kinase protein sequence encoded by a cDNA made fromTorpedo californica electric organ mRNAs. Proc Natl Acad Sci USA 81: 7007?7012, 1984

Giraudat J, Devillers-Thiery A, Perriard JC, Changeux JP. Complete nucleotide sequence ofTorpedo marmorata mRNA coding for the 43 kDa v2-protein: muscle-specific CK. Proc Natl Acad Sci USA 81: 7313?7317, 1984

Witzemann K: Creatine phosphokinase: isoenzymes inTorpedo marmorata. Europ J Biochem 150: 201?210, 1985

Perryman MB, Knell JD, Ifegwu J, Roberts R: Identification of the 43-kDa polypeptide associated with acetylcholine receptorenriched membranes and MM-creatine kinase. J Biol Chem 260: 9399?9404, 1985

Wallimann T, Walzthöny D, Wegmann G, Moser H, Eppenberger HM, Barrantes FJ: Subcellular localization of creatine kinase inTorpedo electrocytes: association with acetylcholine receptorrich membranes. J Cell Biol 100: 1063?1072, 1985

Barrantes FJ, Mieskes G, Wallimann T: Creatine kinase activity in theTorpedo electrocyte and in the non-receptor, peripheral v-proteins from acetylcholine receptor-rich membranes. Proc Natl Acad Sci USA 80: 5440?5444, 1983

Barrantes FJ, Braceras A, Caldironi HA, Mieskes G, Moser H, Toren CE, Roque ME, Wallimann T, Zechel A: Isolation and characterization of acetylcholine receptor membrane-associated and soluble electrocyte creatine kinase. J Biol Chem 260: 3024?3034, 1985

Gysin R, Yost B, Flanagan SD: Creatine kinase isoenzymes inTorpedo californica: absence of the major brain isoenzyme from nicotinic acetylcholine receptor membrane. Biochem 25: 1271?1278, 1986

Borroni E: Role of creatine phosphate in the discharge of the electric organ ofTorpedo marmorata. J Neurochem 43: 795?798, 1984

Blum H, Balschi JA, Johnson RG: Coupledin vivo activity of creatine phosphokinase and the membrane-bound (Na+/K+)-ATPase in the resting and stimulated electric organ of the electric fishNarcine brasiliensis. J Biol Chem 266: 10254?10259, 1991

Dunant Y, Loctin F, Marsal J, Müller D, Parducz A, Rabasseda X: Energy metabolism and quantal acetylcholine release: effects of Botulinum toxin, 1-fluoro-2,4-dinitrobenzene, and diamide in theTorpedo electric organ. J Neurochem 50: 431?439, 1988

Ames A, Walseth TF, Heyman RA, Barad M, Graeff RM, Goldberg ND: Light-induced increases in cGMP metabolic flux correspond with electrical responses of photoreceptor cells. J Biol Chem 261: 13034?13042, 1986

Hyghes JT, Jerome D, Krebs HA: Ultrastructure of the avian retina: an anatomical study of the retina of the domestic pigeon (Columba livia) with particular reference to the distribution of mitochondria. Exp Eye Res 14: 189?205, 1972

Buono RJ, Sheffield JB: Changes in distribution of mitochondria in the developing chick retina. Exp Eye Res 53: 187?198, 1991

Olson A, Pugh EN: Diffusion coefficient of cyclic GMP in Salamander rod outer segments estimated with two fluorescent probes. Biophys J 65: 1335?1352, 1993

Wallimann T, Wegmann G, Moser H, Huber R, Eppenberger HM: High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells. Proc Natl Acad Sci USA 83: 3816?3819, 1986

Wegmann G, Huber R, Zanolla E, Eppenberger HM, Wallimann T: Differential expression and localization of brain-type and mitochondrial creatine kinase isoenzymes during development of the chicken retina: Mi-CK as a marker for differentiation of photoreceptor cells. Differentiation 46: 77?87, 1991

Dontsov AE, Zak PP, Ostrovskii MA: Regeneration of ATP in outer segments of frog photoreceptors. Biochem (USSR) 43: 471?474, 1978

Schnetkamp PPM, Daemen FJM: Transfer of high-energy phosphates in bovine rod outer segments. Biochim Biophys Acta 672: 307?312, 1981

Sitaramayya A, Liebman PA: Mechanism of ATP quench of phosphodiesterase activation in rod disk membranes. J Biol Chem 258: 1205?1209, 1983

Sather WA, Detwiler PB: Intracellular biochemical manipulation of phototransduction in detached rod outer segments. Proc Natl Acad Sci USA 84: 9290?9294, 1987

Fesenko EE, Krapivinsky GB: Cyclic GMP binding sites and light control of free cGMP concentration in vertebrate rod photoreceptors. Photobiochem Photobiophys 13: 345?358, 1986

Mahadevan LC, Whatley SA, Leung TKC, Lim L: The brain form of a key ATP-regulating enzyme, creatine kinase, is a phosphoprotein. Biochem J 222: 139?144, 1984

Chida K, Tsunenaga M, Kasahara K, Kohno Y, Kuroki T: Regulation of creatine phosphokinase B activity by protein kinase C. Biochem Biophys Res Commun 173: 346?350, 1990

Quest AFG, Soldati T, Hemmer W, Perriard JC, Eppenberger HM, Wallimann T: Phosphorylation of chicken brain-type creatine kinase affects a physiologically important kinetic parameter and gives rise to protein microheterogeneityin vivo. FEBS Lett 269: 457?464, 1990

Kühn H, Hall SW, Wilden U: Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 176: 473?478, 1984

Mascarelli F, Raulais D, Courtois Y: Fibroblast growth factor phosphorylation and receptors in rod outer segments. EMBO J 8: 2265?2273, 1989

Friedman DL, Hejtmancik JF, Hope JN, Perryman B: Developmental expression of creatine kinase isoenzymes in mammalian lens. Exp Eye Res 49: 445?457, 1989

Golander A, Binderman I, Kaye AM, Nimrod A, Sömjen D: Stimulation of creatine kinase activity in rat organs by human growth hormonein vivo andin vitro. Endocrinol 118: 1966?1970, 1986

Piatigorsky J: Lens differentiation in vertebrates. Differentiation 19: 134?153, 1981

Chandler WL, Fine JS, Emery M, Weaver D, Reichenbach D, Clayson KJ: Regional creatine kinase, adenylate kinase and lartate dehydrogenase in normal canine brain. Stroke 19: 251?255, 1988

Maker HS, Lehrer GM, Silides DJ, Weiss C: Regional changes in cerebellar creatine phosphate metabolism during late maturation. Exp Neurol 38: 295?300, 1973

Manos P, Bryan GK, Edmond J: Creatine kinase activity in postnatal rat brain development and in cultured neurons, astrocytes and oligodendrocytes. J Neurochem 56: 2101?2107, 1991

Kahn MA: Effect of calcium on creatine kinase activity of cerebellum. Histochem 48: 29?32, 1976

Cadoux-Hudson TA, Blackledge MJ, Radda GK: Imaging of human brain creatine kinase activityin vivo. FASEB J 3: 2660?2666, 1989

Molloy GR, Wilson CD, Benfield P, de Vellis J, Kumar S: Rat brain creatine kinase messenger RNA levels are high in primary cultures of brain astrocytes and oligodendrocytes and low in neurons. J Neurochem 59: 1925?1932, 1992

Quest AFG, Eppenberger HM, Wallimann T: Purification of brain-type creatine kinase (B-CK) from several tissues of the chicken: B-CK subspecies. Enzyme 41: 33?42, 1989

Quest AFG, Eppenberger HM, Wallimann T: Two different B-type creatine kinase subunits dimerize in a tissue-specific manner. FEBS Lett 262: 299?304, 1990

Hemmer W, Glaser SJ, Hartmann GR, Eppenberger HM, Wallimann T: Covalent modification of creatine kinase by ATP: evidence for autophosphorylation. In: LMG Heilmeyer (ed.) Cellular Regulation by Protein Phosphorylation. NATO ASI Series Vol. H56. Springer, Berlin, 1991, pp 143?147

Hemmer W, Zanolla E, Furter-Graves EM, Eppenberger HM, Wallimann T: Creatine kinase isoenzymes in chicken cerebellum: specific localization of brain-type CK in Bergmann glial cells and muscle-type CK in Purkinje neurons. Eur J Neurosci 6: 538?549, 1994

Soldati T, Schäfer BW, Perriard JC: Alternative ribosomal initiation gives rise to chicken brain-type CK isoproteins with heterogenous amino termini. J Biol Chem 265: 4498?4506, 1990

Hemmer W, Skarli M, Perriard JC, Wallimann T: Effect of okadaic acid on protein phosphorylation patterns of chicken myogenic cells with special reference to creatine kinase. FEBS Lett 327: 35?40, 1993

Swanson Ph: The particulate adenosine triphosphate creatine phosphotransferase from brain: its distribution in subcellular fractions and its properties. J Neurochem 14: 343?356, 1967

Booth RFG, Clark JB: Studies on the mitochondrially bound form of rat brain creatine kinase. Biochem J 170: 145?151, 1978

Wevers RA, Reutlingsperger CPM, Dam B, Soons JBJ: Mitochondrial creatine kinase in the brain. Clin Chim Acta 119: 209?223, 1982

Wyss M, Schlegel J, James P, Eppenberger HM, Wallimann T: Mitochondrial creatine kinase from chicken brain. Purification, biophysical characterization and generation of heterodimeric and heterooctameric molecules with subunits of other creatine kinase isoenzymes. J Biol Chem 265: 15900?15908, 1990

Hemmer W, Wallimann T: Functional aspects of creatine kinase in brain. Dev Neurosci 15 (3?5), 1993

Hamburg RJ, Friedman DL, Olson EN, Ma TS, Cortez MD, Goodman C, Puleo PR, Perryman MB: Muscle creatine kinase isoenzyme expression in adult human brain. J Biol Chem 265: 6403?6409, 1990

Palay S, Chan-Palay V: Cerebellar cortex, cytology and organization. Springer Verlag, New York, 1974

Rakic P: Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study inMaccacus rhesus. J Comp Neurol 141: 283?312, 1971

Hatten ME: Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. Trends Neurosci 13: 179?184, 1990

Newman EA: Regulation of potassium levels by glia cells in the retina. Trends Neurosci 8:156?159, 1985

Reichenbach A: Glial K+-permeability and CNS K+-clearance by diffusion and spatial buffering. In: NJ Abott (ed.) Glial-Neuronal Interaction. Acad. Sci. New York, 1991, pp 272?286

Hertz L, Peng L: Energy metabolism at the cellular level of the CNS. Can J Physiol Pharmacol 70: S145-S157, 1991

Knöpfel T, Vranesic I, Staub C, Gähwiler BH: Climbing fibre responses in olivo-cerebellar slice cultures. II Dynamics of cytosolic calcium in Purkinje cells. Eur J Neurosci 3: 343?348, 1991

Ito M: The cellular basic of cerebellar plasticity. Curr Opinion Neurobiol 1: 616?620, 1991

Kuwajima G, Futatsugi A, Niinobe M, Nakanishi S, Mikoshiba K: Two types of ryanodyne receptors in mouse brain: skeletal muscle type exclusively in Purkinje cells and cardiac muscle type in various neurons. Neuron 9: 1133?1142, 1992

Villa A, Podini P, Clegg DO, Pozzan T, Meldolesi J: Intracellular Ca2+-stores in chicken Pukinje neurons: differential distribution of low affinity-high capacity Ca2+-binding protein, calsequestrin, of Ca2+-ATPase and of ER lumenal protein. Bip. J Cell Biol 113: 779?791, 1991

Takei K, Stukenbrok H, Metcalf A, Mignery JA, Sudhof TC, Volpe P, DeCamilli P: Ca2+-stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3-receptor, Ca2+-ATPase, and calsequestrin. J Neurosci 12: 489?505, 1992

Michelangeli F, DiVirgilio F, Villa A, Podini P, Meldolesi J, Pozzan T: Identification kinetic properties and intracellular localization of the (Ca2+?Mg2+)-ATPase from the intracellular stores of chicken cerebellum. Biochem J 275: 555?561, 1991

Campbell AM, Wuytack F, Fambrough DM: Differential distribution of the alternative forms of the sarcoplasmic/endoplasmic reticulum (Ca2+?Mg2+)-ATPase, SERCA 2b and SERCA 2a, in the avian brain. Brain Res 605: 67?76, 1993

Rudin M, Sauter A: Dihydropyridine calcium antagonists reduce the consumption of high-energy phosphates in the rat brain. A study using combined31P/1H magnetic resonance spectroscopy and31P saturation transfer. J Pharmacol Exper Therapeutics 251: 700?706, 1989

Friedhoff AJ, Lerner MH: CK isoenzyme associated with synaptosomal membrane and synaptic vesicles. Life Sci 20: 867?872, 1977

Lim L, Hall C, Leung T, Mahadevan L, Whatley S: Neuron-specific enolase and CK are protein components of rat brain synaptic plasma membranes. J Neurochem 41: 1177?1182, 1983

Sweadner KJ: Two molecular forms of Na+/K+-stimulated ATPase in brain. J Biol Chem 254: 6060?6067, 1979

Erecinska M, Silver IA: ATP and brain function. J Cerebr Blood Flow and Metabolism 9: 2?19, 1989

Carafoli E: Intracellular calcium homeostasis. Annu Rev Biochem 56: 395?433, 1987

Brady ST, Lasek RJ: Nerve-specific enolase and creatine kinase in axonal transport: ?Soluble proteins? and axoplasmic matrix. Cell 23: 515?523, 1981

Oblinger MM, Brady ST, McQuarrie IG, Lasek RJ: Cytoplasmic differences in the protein composition of the axonally transported cytoskeleton in mammalian neurons. J Neurol 7: 433?462, 1987

Gerbitz KD, Deufel T, Summer J, Thallemer J, Wieland OH: Brain-specific proteins: creatine kinase BB isoenzyme is cochromatographed during preparation of neuron-specific enolase from human brain. Clin Chim Acta 133: 233?239, 1983

Holtzman D, McFarland EW, Jacobs D, Offutt MC, Neuringer LJ: Maturational increase in mouse brain creatine kinase reaction rates shown by phosphorus magnetic resonance. Dev Brain Res 58: 181?188, 1991

Holtzman D, Herman MM, Desantel M, Lewiston N: Effects of altered osmolality on respiration and morphology of matocilondria from the developing brain. J Neurochem 33: 453?460, 1979

Holtzman D, Tsuji M, Wallimann T, Hemmer W: Functional maturation of creatine kinase in rat brain: a hypothesis. Dev Neurosci 15 (3?5), 1993

Binderman I, Harel S, Earon Y, Tomer A, Weisman Y, Kaye AM, Sömjen D: Acute stimulation of creatine kinase activity by vitamin D metabolites in the developing cerebellum. Biochim Biophys Acta 972: 9?16, 1988

Bergen HT, Pentecost BT, Dickerman HW, Pfaff DW:In situ hybridization for creatine kinase-B messenger RNA in rat uterus and brain. Mol Cell Endocrinol 92: 111?119, 1993

Iyengar MR, Fluellen, CE, Iyengar CW: Creatine kinase from the bovine myometrium: purification and characterization. J Muscle Res Cell Motility 3: 231?246, 1982

Payne RM, Friedman DL, Grant JW, Perryman BM, Strauss AW: Creatine kinase isoenzymes are highly regulated during pregnancy in rat uterus and placenta. Am J Physiol 265: E624-E635, 1993

Clark JF, Khuchua Z, Kuznetsov A, Saks VA, Ventura-Clapier R: Compartmentation of creatine kinase isoenzymes in myometrium of gravid guinea pigs. J Physiol (Lond) 466: 553?572, 1993

Dawson MJ, Wray S: Changes in phosphorus metabolism in the rat uterus following parturition. J Physiol (Lond) 336: 19?20, 1983

Reiss NA, Kaye AM: Identification of the major component of the estrogen-induced protein of rat uterus as the BB-isoenzyme of CK. J Biol Chem 256: 5741?5749, 1981

Spatz M, Waisman A, Kaye AM: Responsiveness of the 5?-flanking region of the brain type isozyme of creatine kinase to estrogens and anti-estrogens. J Steroid Biochem Mol Biol 41: 711?714, 1992

Iyengar MR, Fluellen CE, Iyengar CW: Increased creatine kinase in the hormone-stimulated smooth muscle of the bovine uterus. Biochem Biophys Res Commun 94: 948?954, 1980

Degani HT, Shaer A, Victor TA, Kaye AM: Estrogen-induced changes in high-energy phosphate metabolism in rat uterus:31P-NMR studies. Biochem 23: 2572?2577, 1984

Degani HT, Victor TA, Kaye AM: Effects of 17?-estradiol on high energy phosphate concentration and the flux catalysed by creatine kinase in immature rat uteri:31P nuclear magnetic resonance studies. Endocrinol 122: 1631?1638, 1988

Keller TCS, Gordon PV: Discrete subcellular localization of a cytoplasmic and a mitochondrial isoenzyme of creatine kinase in intestinal epithelial cells. Cell Motil Cytoskeleton 19: 169?179, 1991

Gordon PV, Keller TCS: Functional coupling to brush border creatine kinase imparts a selective energetic advantage to contractile ring myosin in intestinal epithelial cells. Cell Motil Cytoskel 21: 38?45 1992

Thalmann R, Miyoshi T, Thalmann I: The influence of ischemia upon energy reserves of inner ear tissue. Laryngoscope 82: 2249?2272, 1972

Spicer SS, Schulte BA: Creatine kinase in epithelium of the inner ear. J Histochem Cytochem 40: 185?192, 1992

Loike JD, Cao L, Brett J, Ogawa S, Silverstein SC, Stern D: Hypoxia induces glucose transporter expression in endothelial cells. Am J Physiol 263: C326-C333, 1992

Bastin J, Cambon N, Thomson M, Lowry OH, Burch HB: Change in energy reserves in different segments of the nephron during brief ischemia. Kidney Internatl 31: 1239?1247, 1987

Ikeda K: Localization of brain-type creatine kinase in kidney epithelial cell subpopulations in rat. Experientia 44: 734?735, 1988

Friedman DL, Parryman MB: Compartmentation of multiple forms of creatine kinase in the distal nephron of the rat kidney. J Biol Chem 266: 22404?22410, 1991

Friedman DL, Roberts R: Purification and localization of braintype CK in sodium chloride transporting epithelia of the spiny dogfish,Squalus acanthias. J Biol Chem 267: 4270?4277, 1992

Epstein FH, Stoff JS, Silvia P: Mechanism and control of hyperosmotic NaCl-rich secretion by the rectal gland ofSqualus acanthias. J Exp Biol 106: 25?41, 1983

Berlet HH, Bonsmann I, Birringer H: Occurrence of free creatine, phosphocreatine and creatine phosphokinase in adipose tissue. Biochim Biophys Acta 437: 166?174, 1976

Gosh A, Ronner P, Cheong E, Khalid P, Matschinsky FM: The role of ATP and free ADP in metabolic coupling during fuelstimulated insulin release from islet ?-cells in the isolated perfused rat pancreas. J Biol Chem 266: 22887?22892, 1991

White KC, Babbitt PC, Buechter DD, Kenyon GL: The principle islet of the Coho Salmon (Oncorhyncus kisutch) contains the BB isoenzyme of creatine kinase. J Prot Chem 11: 489?494, 1992

Aired S, Creach Y, Palevody C, Esclassan J, Hollande E: Creatine phosphate as energy source in the cerulein-stimulated rat pancreas: study by31P nuclear magnetic resonance. Int J Pancreatol 10: 81?95, 1991

Perriard JC, Rosenberg UB, Wallimann T, Eppenberger HM, Caravatti M: The switching of creatine kinase gene expression during myogenesis. In: ML Pearson, HF Epstein (eds) Monograph on Muscle Development: Molecular and Cellular Control. Cold Spring Harbor, 1982, pp 237?245

Graig FA, Smith JC: Creatine phosphokinase in thyroid: isoenzyme composition compared with other tissues. Science 156: 254?255, 1967

Kanemitsu F, Kawanishi I, Mizushima J: Characteristics of mitochondrial creatine kinases from normal human heart and liver tissues. Clin Chim Acta 119: 307?317, 1982

Wyss M, Wallimann T, Köhrle J: Selective labelling and inactivation of creatine kinase isoenzymes by the thyroid hormone analogue N-bromoacetyl-3,3?,5-triiodo-L-thyronine. Biochem J 291: 463?472, 1993

Kvam BJ, Pollesello P, Vittur F, Paoletti S:31P-NMF-studies of resting zone cartilage from growth plate. Magn Res Med 25: 355?361, 1992

Shapiro IM, Debolt K, Funanage VL, Smith S, Tuan RS: Developmental regulation of creatine kinase activity in cells of the epiphyseal growth cartilage. J Bone Mineral Res 7: 493?500, 1992

Sömjen D, Weisman Y, Mor Z, Harell A, Kaye AM: Regulation of proliferation of rat cartilage and bone by sex steroid hormones. J Steroid Biochem Mol Biol 40: 717?723, 1991

Sömjen D, Kaye AM, Binderman I: 24R,25-dihydroxyviototine D stimulates creatine kinase BB activity in chick cartilage cells in culture. FEBS Lett 167: 281?284, 1984

Funanage VL, Carango P, Shapiro IM, Tokuoka T, Tuan RS: Creatine kinase activity is required for mineral deposition and matrix synthesis in endochondral growth cartilage. Bone and Mineral 17: 228?236, 1992

Sömjen D, Weisman Y, Binderman I, Kaye AM: Stimulation of creatine kinase BB activity by 1?,25-dihydroxycholecalciferol and 24R,25-dihydroxycholecalciferol in rat tissues Biochem J 219: 1037?1041, 1984

Sömjen D, Kaye AM, Binderman I: Stimulation of creatine kinase BB activity by parathyroid hormone and by prostaglandin E2 in cultured bone cells. Biochem J 225: 591?596, 1985

Sömjen D, Weisman Y, Harell A, Berger E, Kaye AM: Direct and sex-specific stimulation by sex steroids of creatine kinase activity and DNA synthesis in rat bone. Proc Natl Acad Sci USA 86: 3361?3365, 1989

DeChatelet LR, McCall CE, Shirley PS: Creatine phosphokinase activity in rabbit alveolar macrophages. Infection and Immunity 7: 29?34, 1973

Loike JD, Kozler VF, Silverstein SC: Creatine kinase expression and creatine phosphate accumulation are developmentally regulated during differentiation of mouse and human monocytes. J Exp Med 159: 746?757, 1984

Loike JD, Somes M, Silverstein SC: Creatine uptake, metabolism, and efflux in human monocytes and macrophages. Am J Physiol 251: C128-C135, 1986

Guimbal C, Kilimann MW: A Na+-dependent creatine transporter in rabbit brain, muscle, heart and kidney. cDNA cloning and functional expression. J Biol Chem 268: 8418?8421, 1993

Loike JD, Kozler VF, Silverstein SC: Increased ATP and creatine phosphate turnover in phagocytosing mouse peritoneal macrophages. J Biol Chem 254: 9558?9564, 1979

Shibata S, Kobayashi B: Blood platelets as a possible source of creatine kinase in rat plasma and serum. Thromb Haemost 39: 701?706, 1978

Shibata S: Creatine phosphate in rat blood platelets. Thromb Haemost 39: 707?711, 1978

Matsui S, Watanabe Y, Kobayashi B: Preferential disappearance of aerobically generated ATP from platelets during thrombin-induced aggregation. Thromb Diath Haemorrh 32: 441?456, 1974

Feld RD, Witte DL: Presence of creatine kinase BB isoenzyme in some patients with prostatic carcinoma. Clin Chem 23: 1930?1932, 1977

Gazdar AF, Sweig MH, Carney DN, VanSteirten AC, Baylin SB, Minna JD: Levels of creatine kinase and its BB isoenzyme in lung cancer specimens and cultures. Cancer Res 41: 2773?2777, 1981

World LE, Li C-Y, Homburger HA: Localization of the B and M polypeptide subunits of creatine kinase in normal and neoplastic human tissues by an immuno peroxidase technique. Am J Clin Pathol 75: 327?332, 1981

Tsung SH: Creatine kinase activity and isoenzyme pattern in various normal tissues and neoplasms. Clin Chem 29: 2040?2043, 1983

Scambia G, Santeusanio G, Panici PB, Iacobelli S, Mancuso S: Immunohistochemical localization of creatine kinase BB in primary cancer: correlation with estrogen receptor content. J Cancer Res Clin Oncol 114: 101?104, 1988

Silverman LM, Dermer GB, Zweig MH, VanSteirteghem AC, Tökes ZA: Creatine kinase BB: a new tumor-associated marker. Clin Chem 25: 1432?1435, 1979

Miller E, Evans AE, Cohn M: Inhibition of rate of tumor growth by creatine and cyclocreatine. Proc Natl Acad Sci USA 90: 3304?3308, 1993

Lillie JW, O'Keefe M, Valinski H, Hamlin A, Varban ML, Kaddurah-Daouk R: Cyclocreatine inhibits growth of a broad spectrum of cancer cells derived from solid tumors. Cancer Res 53: 3172?3178, 1993

Pratt R, Vallis LM, Lim CW, Chisnall WN: Mitochondrial creatine kinase in cancer patients. Pathol 19: 162?165, 1987

DeLuca M, Hall N, Rice R, Kaplan NO: Creatine kinase isoenzymes in human tumors. Biochem Biophys Res Commun 99: 189?195, 1981

Kanemitsu F, Kawanishi I, Mizushima J, Okigaki T: Mitochondrial creatine kinase as a tumor associated marker. Clin Chim Acta 138: 175?183, 1984

Kaddurah-Daouk R, Lillie JW, Daouk GH, Green MR, Kingston R, Schimmel P: Induction of a cellular enzyme for energy metabolism by transforming domains of adenovirus Ela. Mol Cell Biol 10: 1476?1483, 1990

Lang H: Creatine kinasae isoenzymes: Pathophysiology and clinical application. In: H Lang (ed.). Springer Verlag, New York, 1981

Ch'ng JLC, Ibrahim B: Transcriptional and posttranscriptional mechanisms modulate creatine kinase expression during differentiation of osteoblast cells. J Biol Chem 269: 2336?2341, 1994

Ch'ng JLC, Shoemaker DL, Schimmel P, Holmes EW: Reversal of CK translational repression by 3?-untranslaed sequences. Science 248: 1003?1006, 1992