Không-thời gian lượng tử vũ trụ đồng quy, spin cao và lực hấp dẫn trong mô hình ma trận IKKT

Journal of High Energy Physics - Tập 2019 - Trang 1-62 - 2019
Marcus Sperling1, Harold C. Steinacker2
1Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
2Faculty of Physics, University of Vienna, Vienna, Austria

Tóm tắt

Chúng tôi thảo luận về một không-thời gian lượng tử đồng quy (3+1)-chiều mô tả vũ trụ FLRW với Big Bounce, được thu được thông qua một phép chiếu của hyperboloid mờ H 4 . Điều này cung cấp một nghiệm nền cho mô hình ma trận IKKT với hạng mục khối lượng. Chúng tôi đặc trưng hóa quang phổ dao động bosonic, bao gồm một tháp các chế độ spin cao hơn, bị cắt đứt ở n. Các chế độ được tổ chức theo một nhóm cấu trúc SO(4, 2) cơ bản, mà bị phá vỡ thành đồng cấu SO(3, 1) của nền. Lý thuyết gauge spin cao thu được bao gồm tất cả các bậc tự do cần thiết cho lực hấp dẫn, và nên rất thích hợp cho việc lượng tử hóa. Tất cả các chế độ đều lan truyền với cùng vận tốc ánh sáng, mặc dù tính bất biến địa phương không hiển hiện. Các chế độ nhiễu loạn metric lan truyền bao gồm các chế độ của một graviton không có khối lượng, cũng như một chế độ vô hướng. Tính biến đổi gauge cho phép thu được tương tự của hành động Einstein-Hilbert tuyến tính hóa, vốn được kỳ vọng sẽ được tạo ra khi lượng tử hóa.

Từ khóa

#không-thời gian lượng tử #vũ trụ FLRW #Big Bounce #mô hình ma trận IKKT #lý thuyết gauge #spin cao #lực hấp dẫn #graviton

Tài liệu tham khảo

H. Steinacker, Emergent Geometry and Gravity from Matrix Models: an Introduction, Class. Quant. Grav.27 (2010) 133001 [arXiv:1003.4134] [INSPIRE]. S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP02 (2000) 020 [hep-th/9912072] [INSPIRE]. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large N reduced model as superstring, Nucl. Phys.B 498 (1997) 467 [hep-th/9612115] [INSPIRE]. I. Chepelev and A.A. Tseytlin, Interactions of type IIB D-branes from D instanton matrix model, Nucl. Phys.B 511 (1998) 629 [hep-th/9705120] [INSPIRE]. D.N. Kabat and W. Taylor, Linearized supergravity from matrix theory, Phys. Lett.B 426 (1998) 297 [hep-th/9712185] [INSPIRE]. H.C. Steinacker, String states, loops and effective actions in noncommutative field theory and matrix models, Nucl. Phys.B 910 (2016) 346 [arXiv:1606.00646] [INSPIRE]. I. Chepelev, Y. Makeenko and K. Zarembo, Properties of D-branes in matrix model of IIB superstring, Phys. Lett.B 400 (1997) 43 [hep-th/9701151] [INSPIRE]. H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Space-time structures from IIB matrix model, Prog. Theor. Phys.99 (1998) 713 [hep-th/9802085] [INSPIRE]. Y. Kimura, Noncommutative gauge theories on fuzzy sphere and fuzzy torus from matrix model, Prog. Theor. Phys.106 (2001) 445 [hep-th/0103192] [INSPIRE]. Y. Kimura, Noncommutative gauge theory on fuzzy four sphere and matrix model, Nucl. Phys.B 637 (2002) 177 [hep-th/0204256] [INSPIRE]. H. Steinacker, Split noncommutativity and compactified brane solutions in matrix models, Prog. Theor. Phys.126 (2011) 613 [arXiv:1106.6153] [INSPIRE]. S.-W. Kim, J. Nishimura and A. Tsuchiya, Late time behaviors of the expanding universe in the IIB matrix model, JHEP10 (2012) 147 [arXiv:1208.0711] [INSPIRE]. S.-W. Kim, J. Nishimura and A. Tsuchiya, Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions, Phys. Rev. Lett.108 (2012) 011601 [arXiv:1108.1540] [INSPIRE]. Y. Ito, J. Nishimura and A. Tsuchiya, Power-law expansion of the Universe from the bosonic Lorentzian type IIB matrix model, JHEP11 (2015) 070 [arXiv:1506.04795] [INSPIRE]. J. Nishimura and A. Tsuchiya, Complex Langevin analysis of the space-time structure in the Lorentzian type IIB matrix model, JHEP06 (2019) 077 [arXiv:1904.05919] [INSPIRE]. D.N. Blaschke and H. Steinacker, Curvature and Gravity Actions for Matrix Models, Class. Quant. Grav.27 (2010) 165010 [arXiv:1003.4132] [INSPIRE]. H. Steinacker, Gravity and compactified branes in matrix models, JHEP07 (2012) 156 [arXiv:1202.6306] [INSPIRE]. H. Steinacker, The curvature of branes, currents and gravity in matrix models, JHEP01 (2013) 112 [arXiv:1210.8364] [INSPIRE]. H. Kawai, K. Kawana and K. Sakai, A note on graviton exchange in the emergent gravity scenario, PTEP2017 (2017) 043B06 [arXiv:1610.09844] [INSPIRE]. V.O. Rivelles, Noncommutative field theories and gravity, Phys. Lett.B 558 (2003) 191 [hep-th/0212262] [INSPIRE]. M. Hanada, H. Kawai and Y. Kimura, Describing curved spaces by matrices, Prog. Theor. Phys.114 (2006) 1295 [hep-th/0508211] [INSPIRE]. H.S. Yang, Emergent Gravity from Noncommutative Spacetime, Int. J. Mod. Phys.A 24 (2009) 4473 [hep-th/0611174] [INSPIRE]. H.S. Yang and M. Sivakumar, Emergent Gravity from Quantized Spacetime, Phys. Rev.D 82 (2010) 045004 [arXiv:0908.2809] [INSPIRE]. A. Chaney, L. Lu and A. Stern, Matrix Model Approach to Cosmology, Phys. Rev.D 93 (2016) 064074 [arXiv:1511.06816] [INSPIRE]. Y. Kaneko, H. Muraki and S. Watamura, Contravariant geometry and emergent gravity from noncommutative gauge theories, Class. Quant. Grav.35 (2018) 055009 [arXiv:1711.01708] [INSPIRE]. A. Stern and C. Xu, Signature change in matrix model solutions, Phys. Rev.D 98 (2018) 086015 [arXiv:1808.07963] [INSPIRE]. H.S. Snyder, Quantized space-time, Phys. Rev.71 (1947) 38 [INSPIRE]. C.N. Yang, On quantized space-time, Phys. Rev.72 (1947) 874 [INSPIRE]. H. Grosse, C. Klimčík and P. Prešnajder, On finite 4-D quantum field theory in noncommutative geometry, Commun. Math. Phys.180 (1996) 429 [hep-th/9602115] [INSPIRE]. S. Ramgoolam, On spherical harmonics for fuzzy spheres in diverse dimensions, Nucl. Phys.B 610 (2001) 461 [hep-th/0105006] [INSPIRE]. J. Medina and D. O’Connor, Scalar field theory on fuzzy S 4, JHEP11 (2003) 051 [hep-th/0212170] [INSPIRE]. J.-P. Gazeau and F. Toppan, A natural fuzzyness of de Sitter space-time, Class. Quant. Grav.27 (2010) 025004 [arXiv:0907.0021] [INSPIRE]. J. Heckman and H. Verlinde, Covariant non-commutative space-time, Nucl. Phys.B 894 (2015) 58 [arXiv:1401.1810] [INSPIRE]. M. Burić, D. Latas and L. Nenadovic, Fuzzy de Sitter Space, Eur. Phys. J.C 78 (2018) 953 [arXiv:1709.05158] [INSPIRE]. M. Sperling and H.C. Steinacker, Covariant 4-dimensional fuzzy spheres, matrix models and higher spin, J. Phys.A 50 (2017) 375202 [arXiv:1704.02863] [INSPIRE]. H.C. Steinacker, Emergent gravity on covariant quantum spaces in the IKKT model, JHEP12 (2016) 156 [arXiv:1606.00769] [INSPIRE]. P. de Medeiros and S. Ramgoolam, Non-associative gauge theory and higher spin interactions, JHEP03 (2005) 072 [hep-th/0412027] [INSPIRE]. M.A. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys.52 (2004) 702 [hep-th/0401177] [INSPIRE]. H.C. Steinacker, Quantized open FRW cosmology from Yang-Mills matrix models, Phys. Lett.B 782 (2018) 176 [arXiv:1710.11495] [INSPIRE]. M. Sperling and H.C. Steinacker, The fuzzy 4-hyperboloid H 4n and higher-spin in Yang-Mills matrix models, Nucl. Phys.B 941 (2019) 680 [arXiv:1806.05907] [INSPIRE]. E. Sezgin and P. Sundell, On an exact cosmological solution of higher spin gauge theory, Bulg. J. Phys.33 (2006) 506 [hep-th/0511296] [INSPIRE]. R. Aros, C. Iazeolla, J. Noreña, E. Sezgin, P. Sundell and Y. Yin, FRW and domain walls in higher spin gravity, JHEP03 (2018) 153 [arXiv:1712.02401] [INSPIRE]. E. Joung and K. Mkrtchyan, Notes on higher-spin algebras: minimal representations and structure constants, JHEP05 (2014) 103 [arXiv:1401.7977] [INSPIRE]. H.C. Steinacker, Cosmological space-times with resolved Big Bang in Yang-Mills matrix models, JHEP02 (2018) 033 [arXiv:1709.10480] [INSPIRE]. D. Klammer and H. Steinacker, Fermions and noncommutative emergent gravity II: Curved branes in extra dimensions, JHEP02 (2010) 074 [arXiv:0909.5298] [INSPIRE]. A.D. Sakharov, Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl.12 (1968) 1040 [INSPIRE]. N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, Berlin, Germany, (2004). K. Hasebe, Non-Compact Hopf Maps and Fuzzy Ultra-Hyperboloids, Nucl. Phys.B 865 (2012) 148 [arXiv:1207.1968] [INSPIRE]. G. Mack, All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys.55 (1977) 1 [INSPIRE]. S. Fernando and M. Günaydin, Minimal unitary representation of SU(2, 2) and its deformations as massless conformal fields and their supersymmetric extensions, J. Math. Phys.51 (2010) 082301 [arXiv:0908.3624] [INSPIRE]. G. Mack and I. Todorov, Irreducibility of the ladder representations of U(2, 2) when restricted to the Poincaré subgroup, J. Math. Phys.10 (1969) 2078 [INSPIRE]. W. Heidenreich, Tensor Products of Positive Energy Representations of SO(3, 2) and SO(4, 2), J. Math. Phys.22 (1981) 1566 [INSPIRE]. A.M. Perelomov, Generalized coherent states and their applications, Springer, Berlin Heidelberg, Germany (1986). H. Grosse and P. Prešnajder, The construction on noncommutative manifolds using coherent states, Lett. Math. Phys.28 (1993) 239 [INSPIRE]. E. Hawkins, Quantization of equivariant vector bundles, Commun. Math. Phys.202 (1999) 517 [q-alg/9708030] [INSPIRE]. G. Ishiki, Matrix Geometry and Coherent States, Phys. Rev.D 92 (2015) 046009 [arXiv:1503.01230] [INSPIRE]. G. Ishiki, T. Matsumoto and H. Muraki, Information metric, Berry connection and Berezin-Toeplitz quantization for matrix geometry, Phys. Rev.D 98 (2018) 026002 [arXiv:1804.00900] [INSPIRE]. J. Pawełczyk and H. Steinacker, A quantum algebraic description of D branes on group manifolds, Nucl. Phys.B 638 (2002) 433 [hep-th/0203110] [INSPIRE]. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP09 (1999) 032 [hep-th/9908142] [INSPIRE]. E.W. Kolb, A Coasting Cosmology, Astrophys. J.344 (1989) 543 [INSPIRE]. M.V. John and K.B. Joseph, Generalized Chen-Wu type cosmological model, Phys. Rev.D 61 (2000) 087304 [gr-qc/9912069] [INSPIRE]. F. Melia and A. Shevchuk, The R h = ct Universe, Mon. Not. Roy. Astron. Soc.419 (2012) 2579 [arXiv:1109.5189] [INSPIRE]. M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys.73 (2001) 977 [hep-th/0106048] [INSPIRE]. R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept.378 (2003) 207 [hep-th/0109162] [INSPIRE]. M. Sperling and H.C. Steinacker, Intersecting branes, Higgs sector and chirality from \( \mathcal{N} \) = 4 SYM with soft SUSY breaking, JHEP04 (2018) 116 [arXiv:1803.07323] [INSPIRE]. H. Aoki, J. Nishimura and A. Tsuchiya, Realizing three generations of the Standard Model fermions in the type IIB matrix model, JHEP05 (2014) 131 [arXiv:1401.7848] [INSPIRE]. D.N. Blaschke and H. Steinacker, On the 1-loop effective action for the IKKT model and non-commutative branes, JHEP10 (2011) 120 [arXiv:1109.3097] [INSPIRE]. M. Visser, Sakharov’s induced gravity: A modern perspective, Mod. Phys. Lett.A 17 (2002) 977 [gr-qc/0204062] [INSPIRE]. P. Gilkey, Invariance Theory: The Heat Equation and the Atiyah-Singer Index Theorem, CRC-Press, (1995). H.C. Steinacker, One-loop stabilization of the fuzzy four-sphere via softly broken SUSY, JHEP12 (2015) 115 [arXiv:1510.05779] [INSPIRE].