Covalent immobilization of Candida rugosa lipase on a novel functionalized Fe 3 O 4 @SiO 2 dip-coated nanocomposite membrane

Food and Bioproducts Processing - Tập 100 - Trang 351-360 - 2016
Marzieh Aghababaie1, Masoud Beheshti2, Amir Razmjou1, Abdol-Khalegh Bordbar3
1Biotechnology Department, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
2Chemical Engineering Department, University of Isfahan, Isfahan, Iran
3Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran

Tài liệu tham khảo

Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3 Chen, 2012, Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability, J. Biosci. Bioeng., 113, 166, 10.1016/j.jbiosc.2011.09.023 Chiou, 2004, Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups, Biomaterials, 25, 197, 10.1016/S0142-9612(03)00482-4 Cui, 2010, Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization, J. Biotechnol., 150, 171, 10.1016/j.jbiotec.2010.07.013 Daraei, 2012, Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water, J. Membr. Sci., 415–416, 250, 10.1016/j.memsci.2012.05.007 Drelich, 2010, Superhydrophilic and superwetting surfaces: definition and mechanisms of control, Langmuir, 26, 18621, 10.1021/la1039893 Ghiaci, 2009, Enzyme immobilization: part 1. Modified bentonite as a new and efficient support for immobilization of Candida rugosa lipase, Appl. Clay Sci., 43, 289, 10.1016/j.clay.2008.09.008 Gupta, 2008, Comparative study of performances of lipase immobilized asymmetric polysulfone and polyether sulfone membranes in olive oil hydrolysis, Int. J. Biol. Macromol., 42, 145, 10.1016/j.ijbiomac.2007.10.018 Hilal, 2004, Immobilization of cross-linked lipase aggregates within microporous polymeric membranes, J. Membr. Sci., 238, 131, 10.1016/j.memsci.2004.04.002 Hou, 2014, Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol–gel coated PVDF membrane, J. Membr. Sci., 469, 19, 10.1016/j.memsci.2014.06.027 Hou, 2014, Laccase immobilization on titania nanoparticles and titania-functionalized membranes, J. Membr. Sci., 452, 229, 10.1016/j.memsci.2013.10.019 Huang, 2011, Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane, J. Mol. Catal. B: Enzym., 70, 95, 10.1016/j.molcatb.2011.02.010 Huang, 2008, Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application, Bioresour. Technol., 99, 5459, 10.1016/j.biortech.2007.11.009 Huang, 2012, The performance of the PVDF-Fe3O4 ultrafiltration membrane and the effect of a parallel magnetic field used during the membrane formation, Desalination, 292, 64, 10.1016/j.desal.2012.02.010 Izrael Živković, 2015, Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia, Biochem. Eng. J., 93, 73, 10.1016/j.bej.2014.09.012 Jian, 2006, Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field, J. Membr. Sci., 284, 9, 10.1016/j.memsci.2006.07.052 Kalantari, 2012, Lipase immobilisation on magnetic silica nanocomposite particles: effects of the silica structure on properties of the immobilised enzyme, J. Mater. Chem., 22, 8385, 10.1039/c2jm30513e Kanimozhi, 2013, Synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and its application in immobilization of lipase from Pseudomonas fluorescens Lp1, Mater. Res. Bull., 48, 1830, 10.1016/j.materresbull.2013.01.024 Li, 2011, Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil, J. Mol. Catal. B: Enzym., 72, 40, 10.1016/j.molcatb.2011.04.022 Pujari, 2006, Poly(urethane methacrylate-co-glycidyl methacrylate)-supported-polypropylene biphasic membrane for lipase immobilization, J. Membr. Sci., 285, 395, 10.1016/j.memsci.2006.09.009 Ranjbakhsh, 2012, Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles, Chem. Eng. J., 179, 272, 10.1016/j.cej.2011.10.097 Razmjou, 2011, The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes, J. Membr. Sci., 378, 73, 10.1016/j.memsci.2010.10.019 Razmjou, 2011, Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process, J. Membr. Sci., 380, 98, 10.1016/j.memsci.2011.06.035 Taurozzi, 2008, Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities, J. Membr. Sci., 325, 58, 10.1016/j.memsci.2008.07.010 van Oss, 1987, Monopolar surfaces, Adv. Colloid Interface Sci., 28, 35, 10.1016/0001-8686(87)80008-8 Van Oss, 1989, Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels, J. Colloid Interface Sci., 128, 313, 10.1016/0021-9797(89)90345-7 Verma, 2013, Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production, Appl. Microbiol. Biotechnol., 97, 23, 10.1007/s00253-012-4535-9 Wang, 2012, Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity, PLoS One, 7, e43478, 10.1371/journal.pone.0043478 Wenzel, 1936, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28, 988, 10.1021/ie50320a024 Xu, 2002, Microporous polypropylene hollow fiber membrane: part I: surface modification by the graft polymerization of acrylic acid, J. Membr. Sci., 196, 221, 10.1016/S0376-7388(01)00600-7 Yan, 2006, Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance, J. Membr. Sci., 276, 162, 10.1016/j.memsci.2005.09.044 Ye, 2007, Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface, Colloid. Surf. B: Biointer., 60, 62, 10.1016/j.colsurfb.2007.05.022 Ye, 2005, Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization, Biomaterials, 26, 6394, 10.1016/j.biomaterials.2005.04.019 Ye, 2006, Entrusting poly(acrylonitrile-co-maleic acid) ultrafiltration hollow fiber membranes with biomimetic surfaces for lipase immobilization, J. Mol. Catal. B: Enzym., 40, 30, 10.1016/j.molcatb.2006.02.001 Ye, 2006, Nanofibrous membranes containing reactive groups: electrospinning from poly(acrylonitrile-co-maleic acid) for lipase immobilization, Macromolecules, 39, 1041, 10.1021/ma0517998 Ye, 2006, Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization, Biomaterials, 27, 4169, 10.1016/j.biomaterials.2006.03.027 Yu, 2009, Preparation and characterization of PVDF–SiO2 composite hollow fiber UF membrane by sol–gel method, J. Membr. Sci., 337, 257, 10.1016/j.memsci.2009.03.054 Yujun, 2008, Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface, Bioresour. Technol., 99, 2299, 10.1016/j.biortech.2007.05.014 Zhu, 2014, Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays, Mater. Sci. Eng. C, 38, 278, 10.1016/j.msec.2014.02.011