Dự đoán Chi phí của Pin Lithium-Ion Hiện Đại cho Xe Điện Đến Năm 2030
Tóm tắt
Tác động tiêu cực của ngành công nghiệp ô tô đến biến đổi khí hậu có thể được giải quyết bằng cách chuyển từ những chiếc xe sử dụng nhiên liệu hóa thạch sang xe điện chạy bằng pin không phát thải. Tuy nhiên, việc áp dụng chúng chủ yếu phụ thuộc vào mức độ sẵn sàng chi trả cho chi phí bổ sung của ắc quy dẫn động. Mục tiêu của bài báo này là dự đoán chi phí của một bộ pin vào năm 2030 khi xem xét hai khía cạnh: đầu tiên, một thập kỷ nghiên cứu sẽ đảm bảo có sự cải thiện trong khoa học vật liệu làm thay đổi thành phần hóa học của pin. Thứ hai, xem xét sự giảm giá của chi phí sản xuất, sự trưởng thành của thị trường và quá trình chuyển đổi sang một tình huống sản xuất đại trà. Chi phí của pin Lithium Nickel Manganese Cobalt Oxide (NMC) (Catot: NMC 6:2:2; Anot: than chì) cũng như pin lithium-ion dựa trên silicon (Catot: NMC 6:2:2; Anot: hợp kim silicon), dự kiến sẽ xuất hiện trên thị trường trong vòng 10 năm, sẽ được dự đoán để giải quyết khía cạnh đầu tiên. Khía cạnh thứ hai sẽ được xem xét bằng cách kết hợp các tính toán chi phí dựa trên quy trình với các đường cong học tập, xem xét đến sự gia tăng của thị trường pin. Rào cản giá 100 đô la/kWh sẽ được đạt tới lần lượt trong khoảng thời gian từ 2020-2025 đối với pin lithium-ion dựa trên silicon và từ 2025-2030 đối với pin NMC, điều này sẽ thúc đẩy toàn cầu việc chấp nhận xe điện.
Từ khóa
Tài liệu tham khảo
Hooftman, N., Oliveira, L., Messagie, M., Coosemans, T., and Mierlo, J.V. (2016). Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting. Energies, 9.
Oliveira, 2015, Key issues of lithium-ion batteries e from resource depletion to environmental performance indicators, J. Clean. Prod., 108, 354, 10.1016/j.jclepro.2015.06.021
(2017, April 19). COP21. Available online: http://www.cop21paris.org/about/cop21/.
European Commission (2001). White Paper: European Transport Policy for 2010: Time to Decide, European Commission. Technical Report.
Grunditz, 2016, Performance Analysis of Current BEVs—Based on a Comprehensive Review of Specifications, IEEE Trans. Transp. Electr., 2, 270, 10.1109/TTE.2016.2571783
Wolfram, A.P., and Lutsey, N. (2016). Electric Vehicles: Literature Review of Technology Costs and Carbon Emissions, The International Council on Clean Transportation.
(2017, March 15). European Alternative Fuels Observatory. Available online: http://www.eafo.eu/vehicle-statistics/m1.
Delucchi, 2001, An Analysis of the Retail and Lifecycle Cost of Barrery-Powered Electric Vehicles, Transp. Res. Part D, 6, 371, 10.1016/S1361-9209(00)00031-6
Neubauer, 2014, The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility, J. Power Source, 257, 12, 10.1016/j.jpowsour.2014.01.075
Rauh, 2015, Understanding the Impact of Electric Vehicle Driving Experience on Range Anxiety, J. Hum. Factors Ergon. Soc., 57, 177, 10.1177/0018720814546372
Franke, 2012, Experiencing Range in an Electric Vehicle: Understanding Psychological Barriers, Appl. Psychol., 61, 368, 10.1111/j.1464-0597.2011.00474.x
Franke, 2013, What drives range preferences in electric vehicle users?, Transp. Policy, 30, 56, 10.1016/j.tranpol.2013.07.005
Pearre, 2011, Electric vehicles: How much range is required for a day’s driving?, Transp. Res. Part C Emerg. Technol., 19, 1171, 10.1016/j.trc.2010.12.010
Dong, 2014, Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data, Transp. Res. Part C Emerg. Technol., 38, 44, 10.1016/j.trc.2013.11.001
Bakker, J. (2011). Contesting Range Anxiety: The Role of Electric Vehicle Charging Infrastructure in the Transportation Transition. [Master’s Thesis, Eindhoven University of Technology].
International Energy Agency (IEA) (2011). Technology Roadmap: Electric and Plug-in Hybrid Electric Vehicles, International Energy Agency (IEA). Technical Report.
(2017, May 16). Klynveld Peat Marwick Goerdeler KPMG’s Global Automotive Executive Survey. Available online: https://assets.kpmg.com/content/dam/kpmg/xx/pdf/2017/01/global-automotive-executive-survey-2017.pdf.
Lazard & Roland Berger (2017, May 10). Global Automotive Supplier Study 2013. Available online: https://www.rolandberger.com/en/Publications/pub_global_automotive_supplier_study_by_roland_berger_and_lazard.html.
International Energy Agency (2016). Global EV Outlook 2016 Electric Vehicles Initiative, IEA.
Mac Donald, J. (2017, October 04). Electric Vehicles to Be 35% of Global New Car Sales by 2040. Available online: https://about.bnef.com/blog/electric-vehicles-to-be-35-of-global-new-car-sales-by-2040/.
(2015). Global Trends to 2025: A Transformed World, Lukoil.
King, N. (2017, May 25). Global Light Vehicle Sales Forecast to Exceed 100 Million Units in 2019. Available online: http://blog.euromonitor.com/2015/07/global-light-vehicle-sales-forecast-to-exceed-100-million-units-in-2019.html.
Goldman Sachs (2017, April 05). Cars 2025. Available online: http://www.goldmansachs.com/our-thinking/technology-driving-innovation/cars-2025/.
Price Waterhouse Coopers (2014). PWC: Prediction; Electric Cars: A Market Outlook: The Future of Plug-in Hybrid Electric and All-Electric Vehicles in Hungary;, PWC: Prediction. Technical Report.
(2017, March 17). Statista. Available online: https://www.statista.com/statistics/267128/outlook-on-worldwide-passenger-car-sales/.
Information Handling Services Automotive (2015). Global Light Vehicle Forecast: Readying For The Next Stage, IHS Automotive. Technical Report.
International Energy Agency (2010). Electric and Plug-In Hybrid Vehicle Roadmap, International Environmental Agency.
Oica (2017). Oica: Sales Figures, Oica. Technical Report.
Deng, 2015, Li-ion batteries: Basics, progress, and challenges, Energy Sci. Eng., 3, 385, 10.1002/ese3.95
Fuller, 1994, Simulation and Optimization of the Dual Lithium Ion Insertion Cell, J. Electrochem. Soc., 141, 1, 10.1149/1.2054684
Xu, 2014, Tuning the structure and property of nanostructured cathode materials of lithium ion and lithium sulfur batteries Gui-Liang, J. Mater. Chem. A, 2, 19941, 10.1039/C4TA03823A
Gopalakrishnan, 2017, A comprehensive study on rechargeable energy storage technologies, J. Electrochem. Energy Convers. Storage, 13, 1
Smekens, J., Gopalakrishnan, R., Van den Steen, N., Omar, N., Hegazy, O., Hubin, A., and Van Mierlo, J. (2016). Influence of electrode density on the performance of Li-ion batteries: Experimental and simulation results. Energies, 9.
Nitta, 2015, Li-ion battery materials: Present and future, Mater. Today, 18, 252, 10.1016/j.mattod.2014.10.040
Mekonnen, Y., Sundararajan, A., and Sarwat, A.I. (April, January 30). A Review of Cathode and Anode Materials for Lithium-Ion Batteries. Proceedings of the 2016 SoutheastCon, Norfolk, VA, USA.
Su, 2013, Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review, Adv. Energy Mater., 4, 1
Blomgren, 2017, The Development and Future of Lithium Ion Batteries, J. Electrochem. Soc., 164, A5019, 10.1149/2.0251701jes
Fergus, 2010, Recent developments in cathode materials for lithium ion batteries, J. Power Source, 195, 939, 10.1016/j.jpowsour.2009.08.089
Mizushima, 1981, LixCoO2: A new cathode material for batteries of high energy density, Solid State Ion., 3–4, 171, 10.1016/0167-2738(81)90077-1
Liu, 2016, Understanding electrochemical potentials of cathode materials in rechargeable batteries, Mater. Today, 19, 109, 10.1016/j.mattod.2015.10.009
Julien, 2014, Comparative Issues of Cathode Materials for Li-Ion Batteries, Inorganics, 2, 132, 10.3390/inorganics2010132
Meyers, R.A., and Doeff, M.M. (2012). Encyclopedia of Sustainability Science and Technology, Springer.
Heyns, M., and Vereecken, P. (2013). Materials for the Next Generation Batteries (Some) Ways of Storing Electricity, KU Leuven. Technical Report.
Meeus, M., and Pace, G. (2013). Current and Future Development of Battery Technology and Its Suitability within Smart Grids, Ghent University. Technical Report.
Preefer, M. (2016). Lithium-Sulfur Batteries and Discharge Products from Cycling Why Li-S Batteries?, Materials Research Laboratory at UCSB. Technical Report.
Xu, 2014, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7, 513, 10.1039/C3EE40795K
Aurbach, 2001, A short review on the comparison between Li battery systems and rechargeable magnesium battery technology, J. Power Source, 97–98, 28, 10.1016/S0378-7753(01)00585-7
Figgemeier, E. (2016). Electrode Composition Comprising Carbon Naotubes, Electrochemical Cell and Method of Making Electrochemical Cells. (EP 3029759 A1), Patent.
Kurfer, 2012, Production of large-area lithium-ion cells— Preconditioning , cell stacking and quality assurance, CIRP Ann. Manuf. Technol., 61, 1, 10.1016/j.cirp.2012.03.101
Field, F.R. (2017). Fundamentals of Process-Based Cost Modeling Session Goal & Outline Review of Process-Based Cost Model, MIT. Technical Report.
Field, 2007, Process cost modeling: Strategic engineering and economic evaluation of Materials technologies, JOM J. Miner. Met. Mater. Soc., 59, 21, 10.1007/s11837-007-0126-0
Patry, 2015, Cost modeling of lithium-ion battery cells for automotive applications, Energy Sci. Eng., 3, 71, 10.1002/ese3.47
Isaacs, 2010, Economic assessment of single-walled carbon nanotube processes, J. Nanoparticle Res., 12, 551, 10.1007/s11051-009-9673-3
Nelson, P.A., Gallagher, K.G., Bloom, I., and Dees, D.W. (2011). Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles.
Wood, 2015, Prospects for reducing the processing cost of lithium ion batteries, J. Power Source, 275, 234, 10.1016/j.jpowsour.2014.11.019
Henriksen, G.L., Amine, K., Liu, J., and Nelson, P.A. (2002). ANL-03/5 Materials Cost Evaluation Report for High-Power Li-Ion HEV Batteries.
Lieberman, 1984, The Learning Curve and Pricing in the Chemical Processing industries, RAND J. Econ., 15, 213, 10.2307/2555676
Nykvist, 2015, Rapidly falling costs of battery packs for electric vehicles, Nat. Clim. Chang., 5, 329, 10.1038/nclimate2564
Anderson, D. (arXiv, 2009). An evaluation of current and future costs for lithium-ion batteries for use in electrified vehicle powertrains, arXiv.
(2017, April 15). Alibaba. Available online: https://www.alibaba.com/showroom/li-ion-nmc-battery.html.
(2017, April 15). Aliexpress. Available online: http://www.aliexpress.com/popular/nmc-battery.html.
(2017, April 15). Batteryspace. Available online: http://www.batteryspace.com/LiNiMnCo-Cells/Packs.aspx.
Chung, D., Elgqvist, E., and Santhanagopalan, S. (2016). Automotive Lithium-ion Cell Manufacturing: Regional Cost Structures and Supply Chain Considerations, Clean Energy Manufacturing Analysis Center (CEMAC).
Ashley, S. (2015). Battling the High Cost of EV Batteries, SAE.
Sweeting, J. (1997). Project Cost Estimating: Principles and Practice, Institution of Chemical Engineers.
Lacy, S. (2017, June 04). Stem CTO: Lithium-Ion Battery Prices Fell 70% in the Last 18 Months. Available online: https://www.greentechmedia.com/articles/read/stem-cto-weve-seen-battery-prices-fall-70-in-the-last-18-months.
Lambert, F. (2017, May 06). Electric Vehicle Battery Cost Dropped 80% in 6 Years down to $227/kWh – Tesla Claims to Be Below $190/kWh. Available online: https://electrek.co/2017/01/30/electric-vehicle-battery-cost-dropped-80-6-years-227kwh-tesla-190kwh/.
The Boston Consulting Group (2010). Batteries for Electric cars: Challanges Opportunities, and the outlook to 2020, The Boston Consulting Group. Technical Report.
Pillot, C. (2015, January 20–21). Battery Market Development for Consumer Electronics, Automotive, and Industrial: Materials Requirements and Trends. Proceedings of the 5th Israeli Power Sources Conference 2015, Herzelia, Israel.
Roland and Berger (2012, January 24–26). Technology & Market Drivers for Stationary and Automotive Battery Systems. Proceedings of the Batteries 2012, Nice, France.
Roland and Berger (2012, January 24–26). The Lithium-Ion Battery Value Chain. Proceedings of the Batteries 2012, Nice, France.
P3 Consulting Group (2016). Cost Developments of Battery Systems, P3 Consulting Group, Inc.. Technical Report.