Corynebacterium pseudotuberculosis may be under anagenesis and biovar Equi forms biovar Ovis: a phylogenic inference from sequence and structural analysis

BMC Microbiology - Tập 16 Số 1 - 2016
Alberto de Oliveira1, Teixeira Pammella1, Marcela Santiago Pacheco de Azevedo1, Syed Babar Jamal1, Sandeep Tiwari1, Síntia Almeida1, Artur M. S. Silva2, Debmalya Barh3, Elaine Maria Seles Dorneles4, Dionei Joaquim Haas4, Marcos Bryan Heinemann5, Preetam Ghosh6, Andrey Pereira Lage4, Henrique César Pereira Figueiredo7, Rafaela Salgado Ferreira8, Vasco Azevedo1
1Departamento de Biologia Geral, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
2Departmento de Genética, Universidade Federal do Pará, Pará, Brazil
3Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba, Medinipur, WB-721172, India
4Departamento de Medicina Veterinária Preventiva. Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
5Departamento de Medicina Veterinária Preventiva E Saúde Animal, Faculdade de Medicina Veterinária E Zootecnia, Universidade de São Paulo, São Paulo, Brazil
6Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
7Aquacen, National Reference Laboratory for Aquatic Animal Diseases, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
8Departamento de Bioquímica e Imunologia, Laboratório de Genética Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hard GC. Corynebacterium ovis Electron Microscopic Examination of Corynebacterium ovis. J Bacteriol. 1969;97:1480–5.

Paule BJ A, Meyer R, Moura Costa LF, Bahia RC, Carminati R, Regis LF, Vale VLC, Freire SM, Nascimento I, Schaer R, Azevedo V. Three-phase partitioning as an efficient method for extraction/concentration of immunoreactive excreted-secreted proteins of Corynebacterium pseudotuberculosis. Protein Expr Purif. 2004;34:311–6.

Songer JG. Bacterial phospholipases and their role in virulence. Trends Microbiol. 1997;5:156–61.

Bayan N, Houssin C, Chami M, Leblon G. Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J Biotechnol. 2003;104:55–67.

Funke G, Lawson PA, Collins MD. Heterogeneity within human-derived centers for disease control and prevention (CDC) coryneform group ANF-1-like bacteria and description of Corynebacterium auris sp. nov. Int J Syst Bacteriol. 1995;45:735–9.

Hall V. Corynebacterium atypicum sp. nov., from a human clinical source, does not contain corynomycolic acids. Int J Syst Evol Microbiol. 2003;53:1065–8.

Hard GC. Comparative toxic effect of the surface lipid of Corynebacterium ovis on peritoneal macrophages. Infect Immun. 1975;12:1439–49.

Dorella FAD, Gustavo L, Achecoa CP, Liveirab SCO, Iyoshia AM, Zevedoa VA. Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res. 2006;37:201–218

Williamson LH. Caseous lymphadenitis in small ruminants. Vet Clin North Am Food Anim Pract. 2001;17:359–71. vii.

Trost E, Ott L, Schneider J, Schröder J, Jaenicke S, Goesmann A, Husemann P, Stoye J, Dorella FA, Rocha FS, Soares SDC, D’Afonseca V, Miyoshi A, Ruiz J, Silva A, Azevedo V, Burkovski A, Guiso N, Join-Lambert OF, Kayal S, Tauch A. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics. 2010;11:728.

Dorella FA, Pacheco LG, Seyffert N, Portela RW, Meyer R, Miyoshi A, Azevedo V. Antigens of Corynebacterium pseudotuberculosis and prospects for vaccine development. Expert Rev Vaccines. 2009;8:205–13.

Marchand CH, Salmeron C, Bou Raad R, Méniche X, Chami M, Masi M, Blanot D, Daffé M, Tropis M, Huc E, Maréchal P, Decottignies P, Bayan N. Biochemical disclosure of the mycolate outer membrane of Corynebacterium glutamicum. J Bacteriol. 2012;194:587–97.

Brown CC, Olander HJ, Alves SF. Synergistic hemolysis-inhibition titers associated with caseous lymphadenitis in a slaughterhouse survey of goats and sheep in Northeastern Brazil. Can J Vet Res. 1987;51:46–9.

Doherr MG, Carpenter TE, Wilson WD, Gardner IA. Application and evaluation of a mailed questionnaire for an epidemiologic study of Corynebacterium pseudotuberculosis infection in horses. Prev Vet Med. 1998;35:241–53.

Britz E, Spier SJ, Kass PH, Edman JM, Foley JE. The relationship between Corynebacterium pseudotuberculosis biovar equi phenotype with location and extent of lesions in horses. Vet J. 2014;200:282–6.

Judson R, Songer JG. Corynebacterium pseudotuberculosis: in vitro susceptibility to 39 antimicrobial agents. Vet Microbiol. 1991;27:145–50.

Dorneles EMS, Santana JA, Andrade GI, Santos ELS, Guimaraes AS, Mota RA, Santos AS, Miyoshi A, Azevedo V, Gouveia AMG, Lage AP, Heinemann MB. Molecular characterization of Corynebacterium pseudotuberculosis isolated from goats using ERIC-PCR. Genet Mol Res. 2012;11:2051–9.

Khamis A, Raoult D, Scola BLA. Comparison between rpoB and 16S rRNA Gene Sequencing for Molecular Identification of 168 Clinical Isolates of Corynebacterium Comparison between rpoB and 16S rRNA Gene Sequencing for Molecular Identification of 168 Clinical Isolates of Corynebacterium. J Clin Microbiol. 2005;43:1934–6.

Costa LR, Spier SJ, Hirsh DC. Comparative molecular characterization of Corynebacterium pseudotuberculosis of different origin. Vet Microbiol. 1998;62:135–43.

Sutherland SS, Hart RA, Buller NB. Genetic differences between nitrate-negative and nitrate-positive C. pseudotuberculosis strains using restriction fragment length polymorphisms. Vet Microbiol. 1996;49:1–9.

Songer JG, Beckenbach K, Marshall MM, Olson GB, Kelley L. Biochemical and genetic characterization of Corynebacterium pseudotuberculosis. Am J Vet Res. 1988;49:223–6.

Vaneechoutte M, Riegel P, de Briel D, Monteil H, Verschraegen G, De Rouck A, Claeys G. Evaluation of the applicability of amplified rDNA-restriction analysis (ARDRA) to identification of species of the genus Corynebacterium. Res Microbiol. 1995;146:633–41.

Connor KM, Quirie MM, Baird G, Donachie W. Characterization of United Kingdom Isolates of Corynebacterium pseudotuberculosis Using Pulsed-Field Gel Electrophoresis Characterization of United Kingdom Isolates of Corynebacterium pseudotuberculosis Using Pulsed-Field Gel Electrophoresis. J Clin Microbiol. 2000;38:2633–7.

Khamis A, Raoult D, La Scola B. Comparison between rpoB and 16S rRNA gene sequencing for molecular identification of 168 clinical isolates of Corynebacterium. J Clin Microbiol. 2005;43:1934–6.

Bujnicki JM. Phylogenomic analysis of 16S rRNA:(guanine-N2) methyltransferases suggests new family members and reveals highly conserved motifs and a domain structure similar to other nucleic acid amino-methyltransferases. FASEB J. 2000;14:2365–8.

Pascual C, Lawson PA, Farrow JA, Gimenez MN, Collins MD. Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. Int J Syst Bacteriol. 1995;45:724–8.

Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev. 1979;43:260–96.

Khamis A, Raoult D, La Scola B. rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol. 2004;42:3925–31.

Dorneles EMS, Santana JA, Ribeiro D, Dorella FA, Guimaraes AS, Moawad MS, Selim SA, Garaldi ALM, Miyoshi A, Ribeiro MG, Gouveia AMG, Azevedo V, Heinemann MB, Lage AP. Evaluation of ERIC-PCR as Genotyping Method for Corynebacterium pseudotuberculosis Isolates. PLoS One. 2014;9:e98758.

Almeida, s., Sandeep Tiwari, Mariano, d., rocha, f. s., Jamal, Syed Babar, Coimbra, n. a. r., Raittz, r. t., Dorella, f. a., Carvalho, a. f., Pereira, f. l., Leal, c. a. g., Debmalya Barh, Ghosh, p., Figueiredo, h. c. p., Moura-Costa, l. f., Portela, r. w V: The Genome Anatomy of Corynebacterium pseudotuberculosis VD57 a Highly Virulent Strain Causing Caseous lymphadenitis. Stand Genomic Sci 2015;57:1-8.

Toyoda K, Teramoto H, Inui M, Yukawa H. Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum. J Bacteriol. 2009;191:968–77.

Toyoda K, Teramoto H, Inui M, Yukawa H. Expression of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR. Appl Microbiol Biotechnol. 2008;81:291–301.

Delétoile A, Decré D, Courant S, Passet V, Audo J, Grimont P, Arlet G, Brisse S. Phylogeny and identification of Pantoea species and typing of Pantoea agglomerans strains by multilocus gene sequencing. J Clin Microbiol. 2009;47:300–10.

Guimarães ADS, Dorneles EMS, Andrade GI, Lage AP, Miyoshi A, Azevedo V, Gouveia AMG, Heinemann MB. Molecular characterization of Corynebacterium pseudotuberculosis isolates using ERIC-PCR. Vet Microbiol. 2011;153:299–306.

Feil EJ, Li BC, Aanensen DM, William P, Spratt BG, Hanage WP. eBURST : Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequence Typing Data eBURST : Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequen. J Bacteriol. 2004;186:1518–30.

Salipante SJ, Hall BG. Inadequacies of minimum spanning trees in molecular epidemiology. J Clin Microbiol. 2011;49:3568–75.

Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Mizrachi I, Ostell J, Pruitt KD, Schuler JD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Souvorov A, Starchenko G, Tatusova TA. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2009;37(Database issue):D5–D15.

Benson DA, Karsch Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2009;37(Database issue):D26–31.

Apweiler R, Bateman A, Martin MJ, O’Donovan C, Magrane M, Alam-Faruque Y, Alpi E, Antunes R, Arganiska J, Casanova EB, Bely B, Bingley M, Bonilla C, Britto R, Bursteinas B, Chan WM, Chavali G, Cibrian-Uhalte E, Silva A, Giorgi M, Fazzini F, Gane P, Castro LG, Garmiri P, Hatton-Ellis E, Hieta R, Huntley R, Legge D, Liu W, Luo J. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2014;42:D191–8.

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.

Waterhouse AM, Procter JB, Martin DM A, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme PTJ. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:1.

Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–26.

Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–4.

Guindon S, Gascuel O. A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Syst Biol. 2003;52:696–704.

Felsenstein J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution (N Y). 1985;39:783.

Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol. 2006;55:539–52.

Suchard MA, Rambaut A. Many-Core Algorithms for Statistical Phylogenetics. Bioinformatics. 2009;25:1370–6.

Pybus OG, Rambaut A, Harvey PH. An integrated framework for the inference of viral population history from reconstructed genealogies. Genetics. 2000;155:1429–37.

Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S. Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci U S A. 2012;109:19333–8.

Nei M, Kumar S, Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press; 2000. p. 333. 2000(August).

Tajima F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics. 1989;123:585–95.

Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101:11030–5.

Eswar N, Webb B, Marti-Renom MA, et al. Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci. 2007;Chapter 2:Unit 2.9. doi: 10.1002/0471140864.ps0209s50 .

Bernstein FC, Koetzle TF, Williams GJ, Meyer EE Jr., Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M. The Protein Data Bank: A Computer-based Archival File For Macromolecular Structures. J of Mol Biol. 1977;112(535).

Soares SC, Silva A, Trost E, Blom J, Ramos R, Carneiro A, Ali A, Santos AR, Pinto AC, Diniz C, Barbosa EG V, Dorella FA, Aburjaile S, Rocha FS, Nascimento KKF, Guimaraes LC, Almeida S, Hassan SS, Bakhtiar SM, Pereira UP, Abreu VAC, Schneider MPC, Miyoshi A, Tauch A, Azevedo V. The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biovar ovis and equi strains. PLoS One. 2013;8:e53818.

Sons JW. The hypercycle: A principle of natural self-organization. Am J Vet Res. 1978;65:23.