Cortical Spheroid Model for Studying the Effects of Ischemic Brain Injury

Rachel M. McLaughlin1, Ilayda Top2, Amanda Laguna3, Christien Hernandez1, Harrison Katz3, Liane L. Livi1, Liana Kramer3, Samantha G. Zambuto4, Diane Hoffman‐Kim5
1Department of Neuroscience, Brown University, Providence, RI 02912, USA
2Department of Neuroscience, Brown University, Providence, RI 02912 USA
3Division of Biology and Medicine, Brown University, Providence, RI, 02912 USA
4Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
5Robert J and Nancy D Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lipton P. Ischemic Cell Death in Brain Neurons. Physiol Rev. 1999;79:1431–568. https://doi.org/10.1152/physrev.1999.79.4.1431.

Mergenthaler P, Meisel A. Do stroke models model stroke? Dis Model Mech. 2012;5:718–25. https://doi.org/10.1242/dmm.010033.

Barthels D, Das H (2020) Current advances in ischemic stroke research and therapies. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1866, 165260. https://doi.org/10.1016/j.bbadis.2018.09.012

Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017;133:245–61. https://doi.org/10.1007/s00401-017-1667-0.

Jensen C, Teng Y (2020) Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front Mol Biosci 7. https://doi.org/10.3389/fmolb.2020.00033

Van Breedam E, Ponsaerts P. Promising Strategies for the Development of Advanced In Vitro Models with High Predictive Power in Ischaemic Stroke Research. IJMS. 2022;23:7140. https://doi.org/10.3390/ijms23137140.

Lovett ML, Nieland TJF, Dingle YL, Kaplan DL. Innovations in 3D Tissue Models of Human Brain Physiology and Diseases. Adv Funct Mater. 2020;30:44. https://doi.org/10.1002/adfm.201909146.

Bhaduri A, et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature. 2020;578:142–8. https://doi.org/10.1038/s41586-020-1962-0.

Dingle Y-TL, et al. Three-Dimensional Neural Spheroid Culture: An In Vitro Model for Cortical Studies. Tissue Eng Part C Methods. 2015;21:1274–83. https://doi.org/10.1089/ten.tec.2015.0135.

Boutin ME, et al. A three-dimensional neural spheroid model for capillary-like network formation. J Neurosci Methods. 2018;299:55–63. https://doi.org/10.1016/j.jneumeth.2017.01.014.

Sevetson JL, Theyel B, Hoffman-Kim D. Cortical spheroids display oscillatory network dynamics. Lab Chip. 2021;21:4586–95. https://doi.org/10.1039/D1LC00737H.

Zhu X, et al. Ultrafast optical clearing method for three-dimensional imaging with cellular resolution. Proc Natl Acad Sci USA. 2019;116:11480–9. https://doi.org/10.1073/pnas.1819583116.

Mehta SL (2014) Mechanisms of Stroke Induced Neuronal Death: Multiple Therapeutic Opportunities. Adv Anim Vet Sci 2, 438–446. https://doi.org/10.14737/journal.aavs/2014/2.8.438.446

Kharlamov A, et al. MAP2 Immunostaining in Thick Sections for Early Ischemic Stroke Infarct Volume in Non-Human Primate Brain. J Neurosci Methods. 2009;182:205–10. https://doi.org/10.1016/j.jneumeth.2009.06.014.

Hinman JD. The back and forth of axonal injury and repair after stroke. Curr Opin Neurol. 2014;27:615–23. https://doi.org/10.1097/WCO.0000000000000149.

Becerra-Calixto A, Cardona-Gómez GP. The Role of Astrocytes in Neuroprotection after Brain Stroke: Potential in Cell Therapy. Front Mol Neurosci. 2017;10:88. https://doi.org/10.3389/fnmol.2017.00088.

Sims NR, Yew WP. Reactive astrogliosis in stroke: Contributions of astrocytes to recovery of neurological function. Neurochem Int. 2017;107:88–103. https://doi.org/10.1016/j.neuint.2016.12.016.

Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 2016;144:103–20. https://doi.org/10.1016/j.pneurobio.2015.09.008.

Xu S, Lu J, Shao A, Zhang JH, Zhang J (2020) Glial Cells: Role of the Immune Response in Ischemic Stroke. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.00294

Hu X, De Silva TM, Chen J, Faraci FM. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circ Res. 2017;120:449–71. https://doi.org/10.1161/CIRCRESAHA.116.308427.

Jiang MQ, et al. Long-term Survival and Regeneration of Neuronal and Vasculature Cells inside the Core Region after Ischemic Stroke in Adult Mice. Brain Pathol. 2017;27:480–98. https://doi.org/10.1111/bpa.12425.

Freitas-Andrade M, Raman-Nair J, Lacoste B (2020) Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 11. https://doi.org/10.3389/fphys.2020.00948

Tardiolo G, Bramanti P, Mazzon E. Overview on the Effects of N-Acetylcysteine in Neurodegenerative Diseases. Molecules. 2018;23:3305. https://doi.org/10.3390/molecules23123305.

Kalaria RN. The role of cerebral ischemia in Alzheimer’s disease. Neurobiol Aging. 2000;21:321–30. https://doi.org/10.1016/s0197-4580(00)00125-1.

Ng SY, Lee AYW. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci. 2019;13:528. https://doi.org/10.3389/fncel.2019.00528.

Karp NA, Reavey N. Sex bias in preclinical research and an exploration of how to change the status quo. Br J Pharmacol. 2019;176:4107–18. https://doi.org/10.1111/bph.14539.

Ramirez FD et al. (2017) Sex Bias Is Increasingly Prevalent in Preclinical Cardiovascular Research: Implications for Translational Medicine and Health Equity for Women. AHA Journals 2. https://doi.org/10.1161/CIRCULATIONAHA.116.026668.

Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev. 2011;35:565–72. https://doi.org/10.1016/j.neubiorev.2010.07.002.

Plevkova J et al. (2021) Various Aspects of Sex and Gender Bias in Biomedical Research. Physiol Res S367–S378 doi:https://doi.org/10.33549/physiolres.934593. https://doi.org/10.33549/physiolres.934593

Virani SS, et al. Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. Circulation. 2020;141:e139–596. https://doi.org/10.1161/CIR.0000000000000757.

Hind WH, England TJ, O’Sullivan SE. Cannabidiol protects an in vitro model of the blood-brain barrier from oxygen-glucose deprivation via PPARγ and 5-HT 1A receptors: CBD modulates BBB permeability. Br J Pharmacol. 2016;173:815–25. https://doi.org/10.1111/bph.13368.

Potapova IA, Brink PR, Cohen IS, Doronin SV. Culturing of Human Mesenchymal Stem Cells as Three-dimensional Aggregates Induces Functional Expression of CXCR4 That Regulates Adhesion to Endothelial Cells. J Biol Chem. 2008;283:13100–7. https://doi.org/10.1074/jbc.M800184200.

Sandhu JK, et al. Molecular mechanisms of glutamate neurotoxicity in mixed cultures of NT2-derived neurons and astrocytes: Protective effects of coenzyme Q10. J Neurosci Res. 2003;72:691–703. https://doi.org/10.1002/jnr.10579.

Zhang W-H, et al. Fundamental role of the Rip2/caspase-1 pathway in hypoxia and ischemia-induced neuronal cell death. Proc Natl Acad Sci. 2003;100:16012–7. https://doi.org/10.1073/pnas.2534856100.

Jiang X, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol. 2018;163–164:144–71. https://doi.org/10.1016/j.pneurobio.2017.10.001.

Bhalerao A, et al. In vitro modeling of the neurovascular unit: advances in the field. Fluids and Barriers of the CNS. 2020;17:22. https://doi.org/10.1186/s12987-020-00183-7.

King AE, Southam KA, Dittmann J, Vickers JC. Excitotoxin-induced caspase-3 activation and microtubule disintegration in axons is inhibited by taxol. Acta Neuropathol Commun. 2013;1:59. https://doi.org/10.1186/2051-5960-1-59.

Mages B, et al. Impaired Neurofilament Integrity and Neuronal Morphology in Different Models of Focal Cerebral Ischemia and Human Stroke Tissue. Front Cell Neurosci. 2018;12:161. https://doi.org/10.3389/fncel.2018.00161.

Zhang Z, Yan J, Taheri S, Liu KJ, Shi H. Hypoxia-inducible factor 1 contributes to N-acetylcysteine’s protection in stroke. Free Radical Biol Med. 2014;68:8–21. https://doi.org/10.1016/j.freeradbiomed.2013.11.007.

Turkmen S, et al. The effect of ethyl pyruvate and N-acetylcysteine on ischemia-reperfusion injury in an experimental model of ischemic stroke. Am J Emerg Med. 2016;34:1804–7. https://doi.org/10.1016/j.ajem.2016.06.003.

Sekhon B, et al. N-Acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res. 2003;971:1–8. https://doi.org/10.1016/S0006-8993(03)02244-3.

Khan M, et al. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res. 2004;76:519–27. https://doi.org/10.1002/jnr.20087.

Gouix E, et al. Oxygen glucose deprivation-induced astrocyte dysfunction provokes neuronal death through oxidative stress. Pharmacol Res. 2014;87:8–17. https://doi.org/10.1016/j.phrs.2014.06.002.

Lee Y-H, Lee S-R. Neuroprotective effects of N-acetylcysteine via inhibition of matrix metalloproteinase in a mouse model of transient global cerebral ischemia. Brain Res Bull. 2020;154:142–50. https://doi.org/10.1016/j.brainresbull.2019.10.004.

Güney O, Erdi F, Esen H, Kiyici A, Kocaogullar Y. N-acetylcysteine prevents vasospasm after subarachnoid hemorrhage. World Neurosurgery. 2010;73:42–9. https://doi.org/10.1016/j.surneu.2009.06.003.