Correlation modelling on the sphere using a generalized diffusion equation

Quarterly Journal of the Royal Meteorological Society - Tập 127 Số 575 - Trang 1815-1846 - 2001
Anthony Weaver1,2, Philippe Courtier2
1Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France
2Laboratoire d'Oceanographie Dynamique et de Climatologie, France

Tóm tắt

AbstractAn important element of a data assimilation system is the statistical model used for representing the correlations of background error. This paper describes a practical algorithm that can be used to model a large class of two‐ and three‐dimensional, univariate correlation functions on the sphere. Application of the algorithm involves a numerical integration of a generalized diffusion‐type equation (GDE). The GDE is formed by replacing the Laplacian operator in the classical diffusion equation by a polynomial in the Laplacian. The integral solution of the GDE defines, after appropriate normalization, a correlation operator on the sphere. The kernel of the correlation operator is an isotropic correlation function. The free parameters controlling the shape and length‐scale of the correlation function are the products kpT, p = 1, 2, …, where (‐1)pkp is a weighting (‘diffusion’) coefficient (kp > 0) attached to the Laplacian with exponent p, and T is the total integration ‘time’. For the classical diffusion equation (a special case of the GDE with kp = 0 for all p > 1) the correlation function is shown to be well approximated by a Gaussian with length‐scale equal to (2k1T)1/2.The Laplacian‐based correlation model is particularly well suited for ocean models as it can be easily generalized to account for complex boundaries imposed by coastlines. Furthermore, a one‐dimensional analogue of the GDE can be used to model a family of vertical correlation functions, which in combination with the two‐dimensional GDE forms the basis of a three‐dimensional, (generally) non‐separable correlation model. Generalizations to account for anisotropic correlations are also possible by stretching and/or rotating the computational coordinates via a ‘diffusion’ tensor. Examples are presented from a variational assimilation system currently under development for the OPA ocean general‐circulation model of the Laboratoire d'Oceanographie Dynamique et de Climatologie.

Từ khóa


Tài liệu tham khảo

Abramowitz M., 1964, Handbook of mathematical functions

10.1256/smsqj.56511

Arfken G., 1966, Mathematical methods for physicists

Barlow R. J., 1989, Statistics: a guide to the use of statistical methods in the physical sciences

10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2

10.1016/S0924-7963(00)00005-1

10.1017/CBO9780511600807

10.1007/BF01029698

Brandt A., 1977, Multilevel adaptive solutions to boundary‐value problems, Math. Comp., 31, 333, 10.1090/S0025-5718-1977-0431719-X

10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2

10.1175/1520-0493(1998)126<2913:ATEODS>2.0.CO;2

10.1002/qj.49712354414

10.1002/qj.49712051912

Courtier P., 1998, The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). Part I: Formulation, Q. J. R. Meteorol. Soc., 124, 1783

Daley R., 1991, Atmospheric data analysis

Daley R., 1999, The NAVDAS Source Book

10.1034/j.1600-0870.1999.t01-2-00003.x

10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO;2

10.1029/94JC01894

Fisher M.andCourtier P.1995‘Estimating the covariance matrices of analysis and forecast error in variational data assimilation’. ECMWF Technical Memo. No. 220. European Centre for Medium‐Range Weather Forecasts Reading UK

10.1002/qj.49712555417

10.1080/07055900.1999.9649623

10.1175/1520-0485(0)027<2146:IEITAC>2.0.CO;2

10.1002/qj.49712555906

10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2

10.1214/aop/1176996606

10.1111/j.1600-0870.1986.tb00460.x

10.2151/jmsj1965.75.1B_181

10.1175/1520-0493(1975)103<0605:OSPOCF>2.0.CO;2

10.1111/j.1600-0870.1986.tb00461.x

10.1002/qj.49711447911

10.1002/qj.49711850509

10.2151/jmsj1965.75.1B_339

10.1002/qj.49712657002

10.1007/BF00211684

Madec G. Delecluse P. Imbard M.andLevy C.1999‘OPA release 8.1 Ocean General Circulation Model reference manual’. Internal report LODYC/IPSL France

10.1016/0079-6611(91)90008-A

Pacanowski R. C.1996MOM 2 documentation user's guide and reference manual. GFDL Ocean Technical Report No. 3.1 Geophysical Fluid Dynamics Laboratory/NOAA

10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2

10.2151/jmsj1965.75.1B_359

Purser R. J., 1986, Bayesian optimal analysis for meteorological data, 167

10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2

10.1002/qj.49712455003

10.1002/qj.49712656415

Tarantola A., 1987, Inverse problem theory: Methods for data fitting and model parameter estimation

10.1175/1520-0493(1986)114<1048:HSOHFE>2.0.CO;2

10.1175/1520-0485(1998)028<1071:AOSFTT>2.0.CO;2

Weaver A. T.andVialard J.2000‘Development of an ocean incremental 4D‐Var scheme for seasonal prediction’. Pp.191–191in Proceedings of the third WMO international symposium on assimilation of observations in meteorology and oceanography 7–11 June1999 Québec City Canada

10.1175/1520-0493(1993)121<2611:SROSCF>2.0.CO;2

10.1175/1520-0493(1980)108<1122:SNMMFV>2.0.CO;2