Correlation between structure, stress and deposition parameters in direct current sputtered zinc oxide films

Oliver Kappertz1, R. Drese1, Matthias Wuttig2,3
1I. Physikalisches Institut, RWTH Aachen, D-52056 Aachen, Germany
2I. Physikalisches Institut, RWTH Aachen, D-52056 Aachen
3ISG 3, Forschungszentrum Jülich, D-52428 Jülich, Germany

Tóm tắt

Thin ZnO and ZnO:Al films have been prepared by reactive dc magnetron sputtering, using both metallic and ceramic targets. The influence of oxygen flow and total pressure on film stress, structure, texture, and surface roughness has been examined. The properties of the films strongly depend on the deposition conditions, in particular the total pressure. Increasing the pressure from 0.5 to 2 Pa resulted in rougher, and less strained films. Increasing the oxygen flow at a constant total pressure led to a slight increase in stress, but had no visible effect on the surface roughness. Structural investigations by x-ray diffraction (XRD) showed that polycrystalline films with pronounced preferential orientation were formed. Most XRD-spectra showed a coexistence of strained and unstrained ZnO in wurtzite structure. The relative abundance of the relaxed phase is a function of the intrinsic stress only, and does not directly depend on deposition parameters. However, the deposition parameters determine the stress within the film, and thus influence the amount of the relaxed grains.

Từ khóa


Tài liệu tham khảo

1999, Thin Solid Films, 350, 192, 10.1016/S0040-6090(99)00050-4

2000, Thin Solid Films, 366, 16, 10.1016/S0040-6090(00)00752-5

2000, Appl. Surf. Sci., 168, 332, 10.1016/S0169-4332(00)00781-9

2000, J. Cryst. Growth, 216, 326, 10.1016/S0022-0248(00)00434-6

1999, J. Vac. Sci. Technol. A, 17, 1761, 10.1116/1.581887

2000, J. Cryst. Growth, 214–215, 289

2000, J. Cryst. Growth, 217, 131, 10.1016/S0022-0248(00)00397-3

1998, Appl. Phys. Lett., 72, 235, 10.1063/1.120707

1999, Thin Solid Films, 351, 164, 10.1016/S0040-6090(99)00158-3

1997, J. Vac. Sci. Technol. A, 15, 1103, 10.1116/1.580437

1993, J. Cryst. Growth, 130, 269, 10.1016/0022-0248(93)90861-P

1980, J. Appl. Phys., 51, 5533, 10.1063/1.327472

1992, Jpn. J. Appl. Phys., Part 2, 31, 257, 10.7567/JJAPS.31S1.257

2000, J. Cryst. Growth, 220, 254, 10.1016/S0022-0248(00)00834-4

1998, J. Appl. Phys., 83, 1087, 10.1063/1.366798

2000, Thin Solid Films, 366, 63, 10.1016/S0040-6090(00)00731-8

1994, Thin Solid Films, 250, 26, 10.1016/0040-6090(94)90159-7

1999, Opt. Mater., 13, 239, 10.1016/S0925-3467(99)00070-1

1999, Thin Solid Films, 343–344, 164

1998, Vacuum, 51, 677, 10.1016/S0042-207X(98)00273-5

1997, J. Appl. Phys., 81, 7764, 10.1063/1.365556

1998, Thin Solid Films, 330, 108, 10.1016/S0040-6090(98)00608-7

1999, Phys. Status Solidi A, 173, 425, 10.1002/(SICI)1521-396X(199906)173:2<425::AID-PSSA425>3.0.CO;2-Q

1995, Vacuum, 46, 1001, 10.1016/0042-207X(95)00092-5

1998, J. Vac. Sci. Technol. A, 16, 2728, 10.1116/1.581408

1995, J. Vac. Sci. Technol. A, 13, 1053, 10.1116/1.579584

1935, Ann. Phys. (Leipzig), 24, 636

2000, J. Cryst. Growth, 214–215, 68

1981, J. Appl. Phys., 52, 6584, 10.1063/1.328610

1996, J. Vac. Sci. Technol. A, 14, 2220, 10.1116/1.580050

2000, Appl. Surf. Sci., 157, 47, 10.1016/S0169-4332(99)00517-6

1999, Thin Solid Films, 348, 165, 10.1016/S0040-6090(99)00060-7

1999, J. Phys. Chem. B, 103, 7557, 10.1021/jp990478t

1998, Thin Solid Films, 318, 117, 10.1016/S0040-6090(97)01148-6

1980, J. Appl. Phys., 51, 6405, 10.1063/1.327585

1998, Surf. Coat. Technol., 98, 1251, 10.1016/S0257-8972(97)00253-3

1997, Surf. Coat. Technol., 93, 27, 10.1016/S0257-8972(97)00036-4

2000, Surf. Coat. Technol., 133–134, 126

1999, Thin Solid Films, 343–344, 81